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Foreword

THE tremendous research and development effort that went into the
development of radar and related techniques during World War II

resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Developmentj
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to }vrite
the summaries of them. This entire staff agreed to remain at work at
MIT for six months or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote reports
or articles have even been mentioned. But to all those \vho contributed
in any way to this great cooperative development enterprise, both in this

~. country and in England, these volumes are dedicated.
<:”
cc,- L. A. DUBRIDGE.
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CHAPTER 1

SERVO SYSTEMS

BY I. A. GETTING

1.1. Introduction. -It is nearly ashardfor practitioners in the servo
art to agree on the definition of aservo asit is for a group of theologians
to agree on sin. It has become generally accepted, however, that a servo

system involves the control of power by some means or other involving a
comparison of the output of the controlled power and the actuating
device. This comparison is sometimes referred to as feedback. There
is a large variety of devices satisfying this description; before attempting
a more formal definition of a servo, it will be helpful to consider an exam-
ple of feedback.

One of the most common feedback systems is the automatic tem-
perature control of homes. In this system, the fuel used in the furnace is
the source of power. This power must be controlled if a reasonably
even temperature is to be maintained in the house. The simplest way
of controlling this source of power would be to turn the furnace on, say,
for one hour each morning, afternoon, and evening on autumn and spring
days and twice as long during the winter. Thk would not be a particu-
larly satisfactory system. A tremendous improvement can be had by
providing a thermostat feedback that turns the furnace on when the
temperature drops below, say, 68° and turns the furnace off when the
temperature rises above 72°. This improvement lies in the fact that
the output of the power source has been compared with the input (a
standard temperature set in the thermostat), and the difference between
the two made to control the source of power—the furnace.

A more colloquial name applied to such a system is “a follow-up
system.” In this example, the operator sets a temperature, and the
temperature of the house, in due course, follows the setting.

The term “follow-up system” grew out of the use of servo systems for
the amplification of mechanical power. Sometimes the part of the system
doing the “following” was remote from the controlling point; such
systems were then called “remote control. ” Remote control can involve
tremendous amplification of power; in certain cases remote control may
be required by physical conditions, although adequate power is locally
available. Let us resort to examples again. On a large naval ship it is
necessary to train and elevate I&in. guns. It is necessary to do this

1
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continuously to compensate for the pitch, the roll, and the yaw of the
ship. Such a gun and turret may weigh 200 tons. It is obviously
impossible to manipulate such a gun manually; power amplification is
required. ‘l’he operator turns a handwheel, and the gun mount is made
to rotate so that its position agrees with the position of the handwheel.
This is a follow-up system—the gun mount follows the handwheel. In
practice, it is possible to place the handlvhecl either directly on the gun
mount or at a remote point, say in the gunnery plotting room below deck.
In the latter case the systcm becomes one of remote control character-
ized by tremendous amplification. On the other hand, in the same ship
a target may be tracked by positioning a telescope attached to the
director. There is adequate power available in the director, but the
position of the director may need to be repeated in the computer below
deck. It is very inconvenient to carry rotating shafts over long dktances
or through watertight bulkheads; therefore resort is had to a remotely
controlled follow-up. , The compl~tm input, shaft is made to follow the
director; bl[t whereas the director had available many horsepolver, the
inpllt servo in the computer may bc only a few \vatts. Temperature
regulators, remote-cent rol Ilnits, find pwver drives are all examples of
servo systems.

Dcjinition .—A servo system is :~combination of elements for the con-
trol of a source of polrer in which tht>mltput of the systcm or some func-
tion of the outp(lt is fed back for comparison }~ith the input and the
difference between these quantities is used in controlling the power.

1.2. Types of Servo Systems. —Servo systems in~rolving mechanical
motion were first used in the control of underwater torpedoes and in the
automatic steering of ships. In both cases a gyroscope was used to
determine a direction. Power was furnished for propelling the torpedo
or the ship. A portion of this power ~vas also available for steering the
ship or torpedo through the action of the rudders. Reaction on the
rudders required power amplification between the gyroscope element
and the rudder. Neither of these systems is simple, because in them two
sources of power need to be controlled: (1) power for actuating the rudders
and (2) power for actually turning the ship. In systems as complicated
as these, the problem of stability is very important. In fact, the most
common consideration in the design of any servo system is that of
stability.

Consider a ship with rudder hard to port (left). Such a ship ]vill
turn to port. If the rudder is kept in this position till the ship arrives
at the correct heading and is then restored to straight-ahead position,
the ship will continue to turn left because of its angular momentum about
its vertical axis. In due course the damping action of the water will
stop this rotation, but only after the ship has overshot the correct



SEC.1.2] TYPEL’3 OF SERVO SYSTEMS 3

direction. If the remainder of the servomechanism operates properly,
the gyrocompass will immediately indicate an error to the left. If the
power amplifier then forces the rudder hard to starboard, the restoring
torque of the starboard rudder will limit the overshoot but under the
conditions described will also produce a second overshoot, this time to
starboard. It is entirely possible that these oscillations from left to
right increase with each successive swing and the steering of the ship
becomes wild. It is important to note that this instability is closely
related to the time lags in the system. The probability of getting into
an unstable situation becomes materially reduced as the reaction time of
the rudder to small errors in heading becomes extremely short. The
stability can also be increased and errors reduced if the rudder displace-
ment is made proportional to the heading error (proportional control).
The behavior of the system can be improved even further by anticipa-
tion control. Anticipation in this application implies that in the setting
of the rudder, use is made of the fact that the gyrocompass error is
decreasing or increasing; it may go as far as to take into account the
actual rate at which the error is increasing or decreasing. Then, as
the ship is approaching the correct heading, anticipation would indicate
the necessity of turning the rudder to starboard, even though the error is
still to port, in order to overcome the angular momentum of the ship.
This deflection of the rudder should be gradually reduced to zero as the
correct heading is reached.

The examples given above seem to imply that mechanical servo
systems are a product of this century. Actually, human physical motor
behavior is largely controlled as a servo system. A person reaches for a
saltcellar. He judges the distance between his hand and the saltcellar.
This distance is the “error” in the position of his hands. Through his
nervous system and subconscious mind this error is used to control muscu-
lar motion, the power being derived from the muscular system. As the
distance decreases, derivative control (anticipation) is brought into
play through subconscious habit, and overshooting of the hand is pre-
vented. A more illustrative example is the process of driving a car. A
person who is just learning to drive generally keeps the car on a road by
fixing his attention on the edge of the road and comparing the location of
this edge of the road with some object on the car, such as the hood cap.
If this distance is too small, the learner reacts by turning the steering wheel
to the left; if it gets too large, he reacts by turning the steering wheel to
the right. It is characteristic of the learner that his driving consists of a
continuous series of oscillations about the desired position. The more
carefully he drives, that is, the greater his concentration, the higher will
be the frequencies of his oscillations an+ the smaller the amplitude of
his errors. As the driver improves, he introduces anticipation, or deriva-

11
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tive control. Inthiscon&tion adfiver takes into consideration the rate
at which he is approaching KIs correct distance from the edge of the road,
or, what is equivalent, he notices the angle between the direction of car
travel and the dh-ection of the road. His control on the steering wheel is
then a combination of disfdacement control and derivative control. His
oscillations become long or nonexistent, and his errors smaller.

So long as the road is straight, a driver of this type, acting as a servo-
mechanism, performs tolerably well. However, additional factors come
into play as he approaches a bend in the road. Chief among these is the
displacement error resulting from the tendency of the operator to go
straight. The error due to continuous uniform curvature of the road can
be taken out by essentially establishing a new zero position for the steer-
ing wheel. A driver performing in this manner exhibits ‘‘ integral con-
trol. ” Actually, a human being is not a simple mechanism, and he has
available in this instance information of other types. His dri}-ing is a
complicated combination of proportional, derivati~-e, and integral con-
trol, mixed with nonlinear elements and knowledge of the direction in
which the road is going to turn. This foreknowledge is sometimes
referred to as anticipation and is sometimes confused with derivative
control. The example serves nevertheless to illustrate the basis of servo-
mechanisms in general. The power to be controlled in this case was
derived from the engine of the car. The inpllt to the system vas the
actual path of the road; the outpllt vws the position of thc cm; and the
error mechanism in which the output and input were compared was
the human operator.

The human operator is a very common clement in many servo systems.
Human elements are used in tracking targets for fire control (see Chap. 8)
in controlling steam engines, in controlling settings on all sorts of machili-
ery. The human operator is sometimes referred to as a biomechanical
link; much can be learned of his response by the application of servo
theory.

The term servo system is not commonly used when the systcm in-
volves a human operator. It is sometimes restricted further to include
control only of systems that involve mechanical motion. For example,
the automatic volume control of a home radio reccivcr is a feedback
system, in which the output level of the receiver is compared with the
desired level (usually a bias voltage) and a diffcmncc, or a combination of
the differences, sets the gain of the rcceivcr. This closed loop meets all
the requirements of a servo systcm, but it dots not involve mechanical
motion. We shall apply the term servo systcm to such devices but shall
restrict the term “servomechanism” to servo systems involving mechani-
cal motion. It is, in general, true that the theory of servomechanisms is
identical with that of feedback amplifiers as developed in the com-
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munications field. There are certain practical differences which at times
make this similarity not quite apparent. Servomechanisms may involve
the control of power through the use of the electronic amplifier, in which
the power is furnished as plate supply for the vacuum tubes; this is very
similar to a feedback amplifier. On the other hand, a servomechanism
may include only hydraulic devices, a pump furnishing oil at a high
pressure being the source of power. The control of thk oil flow may be
accomplished by hydraulic valves. Mathematically the electronic
amplifier and the hydraulic system may be very similar; but in the
physical aspects and in the frequencies and power levels involved the
two may be (but are not necessarily so) quite different. A hydraulic
system may be able to respond to frequencies up to 20 cps; a feedback
amplifier may be built to operate up to frequencies as high as thousands
of megacycles. Hydraulic systems have been made in power levels up
to 200 hp; feedback amplifiers are generally used in ranges of power of a
few watts to milliwatts.

In previous examples, reference \&asmade to the use of servo systems
as power amplifiers and as a means of remet e control. Servo systems
perform two other major functions: (1) as transformers of information or
data from one type of power to another and (2) as null instruments in
computing mechanisms.

It is sometimes desired to change electrical voltage to mechanical
motion without int reducing errors arising from variations of load or power
supply. Such a problem can be solved by the use of a servomechanism.
For example, an electric motor is made to rotate a shaft on which is
mounted a potentiometer. The voltage on this potentiometer can then
be made to vary as any arbitrary function of shaft position. This
output voltage is compared with the original electrical voltage, and a
dhlerence or some function of it made to control the electric motor.
This is a servomechanism.

It should have been clear that in all the preceding examples a com-
parison was made between output and input and that the source of power
was so controlled as to reduce the difference between the output and input
to zero. In other words, all servo systems are null devices, sometimes
called error-sensitive devices. The advantages of such a system from a
standpoint of component design will be indicated in the next section.

A null device can be made to solve mathematical equations such as
are involved in the fire-control problem. Figure 1.1 is a schematic for the
mechanization of the fire-control problem in one dimension. The future
range R depends on the present range r, on the speed of the target in
range dr/dt, and on the time T required for a bullet to travel from the gun
to the target. The time of flight T of the bullet is some function of the
future range R—a function that is generally not available as a simple
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analytic relation, but only from ballistic tables. The relations between
these quantities may be expressed thus:

dr
‘= ’-+TZ’

T = j(R).

(1)

(2)

It is obvious that future range cannot be obtained without knowledge of
the time of fllght and that time of flight cannot be known without know-
ing future range. It is necessary to solve these equations simultaneously.

Power
t-i,

Ampllf!er
I

I
7 Cam

R’=r+T$

FIG.1.1.—Servomechanismin a computer.

In Fig. 1.1, range is introduced at the lower left-hand corner. The deriva-
tive of range is taken and multiplied by an arbitrary value of time of
fllght T. The product is added to the observed range, to give a hypo-
thetical future range R’. This hypothetical future range actuates the
cam giving the time of flight T’ corresponding to thk hypothetical future
range. If T’ were equal to T, the initial assumption of the time of flight
would have been correct; this, of course, would be accidental. In general,
the assumed value T will differ from T’. The difference c = T – T’

can be fed into an amplifier supplied from an independent source of power,
and this amplifier used to drive the motor attached to the T shaft. If
now T’ is greater than T, the amplifier will apply a voltage to the motor
that will drive T to smaller values, tending thus to reduce the difference
T – T’. When this clifference will have reached zero, the future range
R and the time of fllght T will correspond to the observed range and range
rate.

This computation could be done without a servo by having a direct
mechanical connection between the output of the cam at T’ and the input
to the multiplier at T. A little thought will show, however, that practical
considerations would limit the usefulness of this arrangement to simple
functions and to devices in which the accuracy would not be destroyed
by the loads imposed. In the above example, the servo has two impor-
tant functions: (1) It introduces a flexible link between the cam and the
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multiplier, and (2) it prevents the feeding of data in a direction opposite
to that shown by the arrows.

Equations (1) and (2) can be written in the more general form

g(l?,z’) = o, (3)
h(R, T) = o. (4)

In theory, it is always possible to solve such a set of simultaneous equa-
tions by eliminating one variable. If, however, g and h are complicated
functions or implicitly depend on another independent variable (say
time), the solution by analytic methods may become difficult. It is
always possible to have recourse to a servo computer of the type illus-
trated in Fig. 1.1.

Servomechanisms can be classified in a variety of ways. They can be
classified (1) as to use, (2) by their motive characteristics, and (3) by their
control characteristics. For example, when classified according to use,
they can be divided into the following: (1) remote control, (2) power
amplification, (3) indicating instruments, (4) converters, (5) computers,
Servomechanisms can be classified by their motive characteristics as
follows: (1) hydraulic servos, (2) thyratron servos, (3) Ward-Leonard
controls, (4) amplidyne controls, (5) two-phase a-c servos, (6) mechanical
torque amplifiers, (7) pneumatic servos, and so on. In general, all these
systems are mathematically similar. Considerations as to choice of the
type of motive power depend on local circumstances and on the particular
characteristics of the equipment under consideration. For instance,
amplidyne controls are useful in a range above approximately + hp.
Below the +-hp range the equipment becomes more bulky than thyratron
or two-phase a-c control units. On the otner hand, drag-cup two-phase
motors are extremely good in the range of a few mechanical watts because
of their low inertia but become excessively hot as the horsepower is
increased above the &hp range. Pneumatic servos are extremely useful
in. aircraft controls and especially in missile devices of short life where
storage batteries are heavy compared with compressed-air tanks. Pneu-
matic servos are also used in a large number of industrial process control
applications.

For the purposes of this book, the most important classification of
servomechanisms is that according to their control characteristics.
Hazen’ has classified servos into (1) relay-type servomechanisms, (2)
definitecorrection servomechanisms, and (3) continuous-control servo-
mechanisms. The relay type of servomechanism is one in which the full
power of the motor is applied as soon as the error is large enough to oper-
ate a relay. The definite-correction servomechanism is one in which the

I H. L. Hazen, “Theory of servomechanisms,” J. Franklin Zn.d., 218, 279
(1934).
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power on the motor is controlled in finite steps at definite time intervals.
The continuous-control servomechanism is one in which the power of the
motor is controlled continuously by some function of the error. This
book concerns itself with the continuous type of control mechanism.
All three types have been used extensively. The relay type is generally
the most economical to construct and is useful in applications where
crude follow-up is required. It has, however, been sllcccssfullv applied
with high performance output, even for such applications as instruments
and power drives for directors. Relays can be made to act very quickly,
that is, in times short compared with the time constants of the motor.
Under these conditions the relay type of servo can bc made to approach
continuous control so closely that no sharp line can be drawn. In Chap.
5, an analysis is made of the limitation on continuolls-control servo-
mechanisms arising from the use of intermittent data. The second
type of servomechanism, the finite step correction, is used principally in
instruments.

The continuous-control systems themselves can be further classified
according to the manner in which the error signal is used to control the
motor: proportional control, integral control, derivative control, anti-
hunt feedback (subsidiary loops), proportional plus derivative control,
and so on. The study of these different methods of control is one of the
major tasks of this book.

Before continuing the discussion on servomechanisms it is worth while
to consider the terminology as it has developed over the past few years.
The definition given in the first section requires that a servo system have
the following properties: (1) A source of power is controlled and (2)
feedback is providccf. This definition applies equally well to four fields
of applied engineering, which have developed more or less concurrently:
(1) feedback amplifiers, (2) automatic controls and regulators, (3)
recording instruments, and (4) remote-control and power servomecha-
nisms. As implied by the first sentence of this book, it is difficult to find
unique definitions segregating these four fields. It is generally agreed
that a servomechanism involves mechanical motion somewhere in the
system; there is agreement that the power drives on a gun turret con-
stitute a servomechanism. Temperature regulators are often excluded
from the class of servomechanisms and classified as automatic regulators
or control instruments, even though such mechanical elements as relays
and motors may be used. If there is any rule that seems to apply, then
perhaps it is that in a servomechanism the element of greatest time lag
should be mechanical and, in general, that the output of the system should
be mechanical. For the purposes of this book, the term servo system
will include all types of feedback devices and the term servomechanism
will be reserved for servo systems involving mechanical output.
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1.3. Analysis of Simple Servo Systems.—The purpose of this section
is to present simple analyses showing various methods of approach to the
mathematical description of servo systems; in subsequent chapters a
formal and reasonably complete analysis is given. The mathematical
tools used in this first treatment have been derived from the general field
of operational calculus and are, therefore, limited to the consideration of
linear systems, that is, systems described by linear differential equations

Input ,

Load

FIG.1.2.—Open-cyclecontrolsyetem. I:lcJ.1.3.—Simpleclosed-cyclecontrol system,

with constant coefficients.’ This limitation restricts only a little the
usefulness of the analysis, inasmuch as most practical servomechanisms
either are linear or can be approximated sufficiently closely by a linear
represent ation.

The advantages of a servo systcm in contrast to an open-cycle system
are illustrated by even the simplest type of servo system. Figure 1.2
schematically shows an open-cycle control system. If the handwheel H

is turned through an angle 81,the source of external power is so controlled
through the amplifier that the motor rotates the load shaft L through an
angle Oo. In a perfect system,, % would at all times be equal to 0,. This
would require, of course, that all the derivatives of 00 were instantane-
ously equal to the derivatives of fl~, Were these conditions to be satisfied,L
the characteristics of the power supply, the amplifier, and the motor
would have to be held constant at all times, or compensation devices

& would have to be incorporated. The amplifier must be insensitive to
power fluctuations; the torque characteristics of the motor must be inde-
pendent of temperature; the system must be insensitive to load varia-
tions; and so on. In general, these requirements cannot. be met. The
most effective example of the open-cycle system is a vacuum-tube ampli-
fier. It is possible to make a vacuum-tube amplifier in which the output
is always proportional to the input within limits of load and power-line
fluctuation. This is, however, almost a unique example; it is nearly

1M. F. Gardnerand J. L. Barnes,Transientsin LinearSystems,Wiley, New York,
1942; E. A. Guillemin, Communication Networks, Vols. 1 and 2, Wiley, New York,
1935; V. Bush, Operational Circuit Analysis, Wiley, New York, 1929.
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impossible to find a power-control mechanism in which the cycle is not
closed mechanically, electrically, or through a human link,

In Fig. 1.3 is shown a schematic of a simple closed-cycle control
system. It differs from the open-cycle control system in that the output
angle th is subtracted from the input angle 61to obtain the error signal c.
It is this error signal which is used to control the amplifier. Figure 13
represents inverse feedback, or, as it is sometimes called, negative feed-
back. Let K, be the gain of the amplifier. Then the output of the
amplifier V is given by

V = K,~. (5)

Assume that the motor has no time lag and a speed at all times propor-
tional to V:

de.

dt
— = + KmV. (6)

For simple proportional control,

~=gl—go (7)

is used directly as input to the amplifier. Combining Eqs. (5) and (6),
we get

J7

z=
or

where K = K, Km. If we
0,0 sin at, we get

do.

dt

1 deo
o,–eo=+—

KIK.~’
(8)

~~++eo=ol, (9)

now consider a sinusoidal input 0, equal to

+ K% = KO,O sin tit. (10)

This equation will be recognized as similar to the equation of an h!C-cir-
cuit driven by an alternating generator, which is, on writing q for the
charge,

R#+&=VOsinuL (11)

The steady-state solution for the RC-circuit can be written

q =* sin (of – ~); (12)
where,

v,
go= , ,, tan $ = +. RC (13)

d“R’ + $2

and ~ is the angle by which the charge lags tJe voltage. Similarly,
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the solution of Eq. (10) is

1

00 = 1900sin (d – ~); (14a)
where

(14b)

If K is large compared with co, this may be expanded by the binomial
theorem as

’00=’14-a (15)

We see immediately that provided only K is much larger than u, the out-
put 60 will be essentially equal to the input 0, in magnitude and phase;
the accuracy of the follow-up requires only making sufficiently high
the velocity constant Km of the motor and the gain K 1 of the amplifier.
In contrast to the open-cycle system, it is not necessary to use’h com-
pensated amplifier or a motor insensitive to load in such a system. These
are the chief and fundamental advantages of inverse feedback.

Equation (15) implies certain limitations on the system shown in
Fig. 1.3. In any real amplifier the gain will be high until saturation
sets in or up to a definite frequency. Likewise, the motor speed constant
will drop off if the speed is increased or torque exceeded. In general,
therefore, there will be an upper value to a beyond which the system will
not function. Actually, all motors have time constants, that is, exhibit
inertial effects, and it is necessary to consider this time constant in the
analysis.

The preceding analysis described the steady state of the servo illus-
trated in Fig. 1.3 when the input is a sine wave. Let us now consider the
transient behavior of the same proportional-control system for transient
solution; instead of a sine-wave input let us assume that the input 19~is
zero for all times up to h and then suffers a discontinuous change to a
new constant A for all times greater than to. In short, a step function is
applied as the input to the servo. The differential equation is

de.
~ + K% = Ko, (16)

and it is to be solved for

e, = o, t < to,
8,= A, t > to; 1 (17)

the solution is
& = ~[1 – ~-K(L–tO)], t > t,,, (18)

as can be shown by substituting in Eq. (16). The step function is shown
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in Fig. 1”4 as a dotted line, and the response is shown as a full line. It is
clear that the output approaches the input as the time beyond toincreases
without limit. The larger the value of K, that is, the larger the gain of
the amplifier and the larger the velocity constant of the motor, the more
quickly will the output approach the input. The error at any time t
is the clifference between the dotted line and the full line. It falls to l/e
of its initial value .4 in a period l/K.

It is evident that the transient analysis and the steady-state analysis
display the same general features of the system. For example, we
see immediately from the transient solution that if the input were a sine

e

I e,

‘E--
!C t

FIG.1.4.—ltmponseof :Lsimplesvvvos>ste,,,to a ,tcL)fu,,ction

wave of frequency j the output, N-ould follm~ it C1OSC1Yonly if thr ]wrioci
of the sinusoid were gmat.rr than 1/1<, that, is, ~ smnllcr than K.

The solution of I?q. (16) for an arbitrary input ran be \\-ritt{,nin
terms of a “\vcighting function. ” If d, is any input beginning fit :~finit(
time, the output will be

I
.

co(t) = K @,(/ – T)(?-K’ (/T, (If))

JrJ

as can be verified by substituting into Eq. (16). In
described by Eq. (17), the outpllt ran be computr{l

/

(–10
90(1) = .IKC-K7 (7’T

o

= .4[1 – ~–x(f -toll,

as found bef orc. ‘1’hr i’llnctiorr

JV(T) = xc-”~’

the case of thr in])llt,
as

(20)

(21)

is called the weighting l’unmion. l’hysicall y Eq. (19) means that at any
time t the output is equxl to a sum of contributions from the input at
all past times. Each clement of the input appears in the output multi-
plied by a factor W(T) dependent on the time int,erval r between the
present time t and the time of the input under consideration. W(r) thus
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specifies the weight with which the input at any past moment contributes
to the present output. It will be noted that in this example the weight-
ing function is an exponential. When the time interval between input
and output is greater than l/K, the contributions to the output will be
small; the remote past input will have been essentially forgotten.

To summarize, the simple system including proportional control, a
linear amplifier, and a motor with no time lag connected as a servo
system with negative feedback has been anal yzed (1) as a stead y-st ate
problem, (2) as a transient problem, and (3) as a problem involving the
weighing of the past history of the
input. All of these analyses give
essentially the same result that the
output is equal to the input for fre-
quencies below a critical value equal
approximately to K. One should
expect that there would be mathe-
matical procedures for going from
one type of analysis to another, and
such is indeed the case.

Another interesting type of
transient input often used in servo
analysis is the discontinuous change
in the speed of e,. Such as input is
shown in Fig. 1.5 by the dotted line.
the form

to t
F1~.1S.-lbspo!lse of a si,,,pleservos>+

temto suddenchangein velocity,

The differential equation no]v takes

+ ~+ + % = z3(f – t“) for t > f,); (22)

=0 for t < to.
The output after time t, is

[
00 = B (t — t,,) — * [1 — e–~(t–~f,’1]. (23)

This is shown as a full line in Fig. 1.5. It is obvious that as time increases,
the velocity of the output will eventually equal the velocity of the input;
there will, however, be an angular displacement or velocity error between
them. The ratio of the velocity to the error approaches the limit K as
t ~ cc ; this is readily seen from the equation

de,

z BK K—— —
e B[l – e-~(~-k’)] = 1 _ ~-K(f-to)”

(24)

This coefficient K, a product of the gain of the amplifier KI and the
velocity constant of the motor K m, is called the velocity-error constant
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and will hereafter be written K.. If the loop were opened, it would be
the ratio of velocity to displacement at the two open ends. It is obvious
that the velocity error in this simple system could be reduced by increas-
ing K. In Chap. 4 we shall see that this error can be made equal to
zero by introducing integral cent rol.

As indicated previously, any motor and its load will exhibit inertial
effects, and Eq. (6) must be modified by adding a term. The simplest
physical motor can be described by a differential equation of the form

(25)

where J is the inertia of the motor (including that of the load referred to
the speed of the motor shaft); j- is the internal-damping coefficient
resulting from viscous friction, electrical loss, and back emf; and Kt is
the torque constant of the motor. If there is no acceleration, the motor
will go at a speed such that the losses are just compensated by the input
V. This value of dt?o/dt is determined by the relation

jm ~ = +K,V. (26)

Substituting from Eq. (6), we see that the internal-damping coefficient
j~ can be written as -.

(27)

Thus the internal-damping coefficient of a motor can be computed by
dividing K,, the stalled-torque constant (say, foot-pounds per volt),
by Kmj the velocity constant of the motor (say, radians per second per
volt). Equation (25) can be rewritten in the form

T. = J ‘F”;
t

(29)

the motor inertia appears only in the time constant Tm. In short, the
characteristics of the motor can be specified by stating its internal-damp-
ing coefficient and its time constant; these can be determined by experi-
mentally measuring stalled torque as a function of voltage, running speed
as a function of voltage, and inertia.

If we now use Eq. (28) instead of Eq. (6) as the differential equation
representing the behavior of the motor, we can find the output due to
an arbitrary input by solving the differential equation

VI
“-e”= ’=%= KIKm–( )

T.$$+d$ ; (30)
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(31)

where Kv equals K IKm. This equation is similar in form to the dif-
ferential equation of an LRC series circuit driven by an external alternat-
ing generator.

Just as in the case of Eq. (6), we can write the specific solution of this
equation. It will perhaps suffice to get the general solution of the
equation that holds when 01 = O:

TdlO+d~O+Kdo=o.
m dt, d~ v

Letting
pl=a+juo and ‘pt=a.

the solution can be written in the form

I% = aep” + bepzf,

where the p’s must satisfy
Ku

p’+$m+~m=o.

The solution of this is

J
,P=– L 1 L 4;%2T. ‘z 2’: .

(32)

jcoo,

(33)

(34)

(35)

The nature of the solution depends on whether 4K,K~T~ is less than,
equal to, or greater than 1. In the first case the radical is real and the
solution consists of overdamped motion (that is, a < l/2T~). In the
second case the output is critically damped, and in the last case the output
rings with a Q equal to v’-. (Q as defined in communication prac-
tice). The system is always stable, and the output approaches the value
of a constant input as t + m.

It is characteristic of a second-order linear differential equation of this
type that the solutions are always stable; % is always bounded if 0, is
bounded. It is, however, unfortunately true that physical systems are
seldom described by equations of lower than the fourth order, especially
if the amplifier is frequency sensitive and the feedback involves con-
version from one form of signal to another. For example, feedback
may be by a synchronous generator with a 60-cycle carrier (see Chap. 4)
which will have to be rectified before being added to the input. This
rectifier will be essentially a filter described by a differential equation of
an order higher than one. The question of stability therefore always
plays an important role in discussions of the design of servo systems.

104. History of Design Techniques. -.4utomatic control devices of
one kind or another have been used by man for hundreds of years, and
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descriptiousof early scrvolike devices can bcfounclin literature at least
as far back as the time of I,eonardo da Vinci. The accumulated knowl-
edge and experience that comprise the present-day scicncc of servo
design, ho\vcvcr, rcccivcd a grrat initial ‘impulse from the ]vork and
publications of Nicholas Minorsky ’ in 1922 and 11. 1,. IIazcn’ in 193-!.
Minorsky’s \rork on the automatic strrring of ships and Irazcn’s on shaft,-
positionirrg types of servomechanisms both cont~ined mathmnatical
analyses based on a direct study of the solutions of dilfcrcntial equations
similar to those of Sec. 1.3. “1’his approach to the design problem IVUS
the only one availalic for many years, and it was exploited \ritil signifi-
cant success by intelligent and industrio(ls drsigrmrs of sc’rvt)nl(~cll:~nisms.

In 1932 h’yquist’ published a proccdurc for studying the stal)ility
of feedback amplifiers by the usc of steady-state techniques. 1[is po\rm-
ful theorcm for studying the stability of fcccfback aml~lifirrs bccamc
known as the N“yquist stability criterion. In Xyquist’s analysis the
behavior of the servo systcm \vith the feedback l(Jop broken is consi{leu,d.
The ratio of a (complex) amp]itudc of the servo output to the (L’L)IT)])]CY)
error amplitude is plottccf in the complex plane, with frrq(lency as LL
variable parameter. If the resulting curve rlocs not encircle tlw critical
point ( —1, O), the system is stable; in fact, the farther the locu~ c:m he
kept away from the critical point the greater is the stability of t]w system.
The theory and application of this criterion arc discussed in (haps. 2
and 4. From the designer’s viewpoint, the best advantage of this mrthod
is that even in complicated systems time can be saved in analysis and a
great insight can be obtained into the detailed physical phcnomrna
involved in the servo loop. Some of the earliest w-ork in this field \ras
done by J. Taplin at .Nfassachusetts Institute of Technology in 1937,
and the work was carried further by H. Harris, 3 also of Massacblwtts
Institute of Technology, who introduced the concept of transfer functions
into servo theory. The ~varcreated a great demand for high-performance
servomechanisms and greatly stimulated the whole subject of servo
design. The supposed demands of military security, however, confined
the results of this stimulation within fairly small academic and industrial
circles, certainly to the over-all detriment of the \var effort, and pre-
vented, for example, the early publishing of the fundamental work of
G. S. Brown and A. C. Hall.’ The restricted, but nevertheless fairly

I N. Minorsky, “Directional Stability of Automatically SteeredBodies,” J. Am.
SOS. Naual Eng., 34, 280 (1922); H. L. Hazen, “Theory of Servomechankms,”
J. Franklin~TMt.,218, 279 (1934).

ZH. h“yquist, “Regeneration Theory,” Belt System Tech. J., XI, 126 (1932).
3 H. Harris, “The Analysis and Design of Servomechanisms,”OSRD Report

454, January 1942.
4G. S. Brown and A. C. Hall, “Dynamic Behavior and Design of Servo-

mechanisms,” Trans.,ASME, 68, 503 (1946).
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widely circulated, publication in 1943 of The Analysis and Synthesis oj

Linear Servomechanisms, by A. C. Hall, gave a comprehensive tre~tment
of one approach to the steady-st,ate analysis of servomechanisms and
popularized the name ‘‘ transfer-locus” method for this approach. Some
of the important concepts introduced by steady-state analysis are those of
“transmission around a loop” and the use of an over-all system operator.

In 1933 Y. W. Lce published the results of work done by himself and
Norbert Wiener, describing certain fundamental relationships between
the real and imaginary parts of the transfer functions rcprcsentativc of
a large class of physical systems. These basic relationships have been
applied in great detail and with great advantage by H. W. Bodel to the
design of electrical networks and feedback amplifiers. Several groups,
working more or less independently, applied and extended Bode’s
techniques to the servomechanism design problcm, and the results have
been very fruitful. The resulting techniques of analysis are so rapid,
convenient, and illuminating that even for very complicated systems the
designer is justified in making a complete analysis of his problcm. As is
shown in Chap. 4, the complete analysis of a systcm can be carried
through much more rapidly than the usual transfer-locus methods per-
mit, and the analysis of multiple-feedback loop systems is particularly
facilitated.

1.5. Performance Specifications. -In designing a servomechanism for
a specific application, the designer necessarily has a clear, definite goal
in mind; the mechanism is to perform some given task, and it must do
so with some minimum desired quality of performance. The designer is,
therefore, faced with the problem of translating this essentially physical
information into a mathematical definition of the desired performance—
one that can then be used as a criterion of success or failure in any
attempted pencil-and-paper synthesis of the mechanism.

The most important characteristic of a servo system is the accuracy
with which it can perform its normal duties. There are several different
ways in which one can specify the accuracy of performance of a servo-
mechanism. The most useful, in many applications, is a statement of
the manner in which the output varies in response to some given input
signal. The input signal is chosen, of course, to be representative of the
type of input signals encountered in the particular application. Many
servos are used in gun directors and gun data computers, for instance, to
reproduce the motion of the target, a ship or a plane, being followed or
tracked by the director. Such motions have certain definite characteris-
tics, because the velocities and accelerations of the targets have finite
physical limitations. The performance of such ,servos is often partially

I H. W. Bode, “Feedback .knplifier Design,” Bell System Tech. J., XIX, 42
(1940).
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summarized by a statement of the errors that may exist between the input
and output motions under certain peak velocities and accelerations or
over certain ranges of velocities and accelerations. Alternatively, one

can specify what the errors may be as a function of time as the mechanism
reproduces some typical target course.

The performance of a servomechanism can also be specified in terms
of its response to a step function. The procedure of experimentally
and theoretically studying a servomechanism through its response to a
step-function input is extremely useful and is widely used for a number of
reasons. The experimental techniques used in such testing are simple
and require a minimum of instrumentation. The characteristics of any
truly linear system are, of course, completely summarized by its response
to a step-function input; that is, if the step-function response is known,
the response to any other arbitrary input signal can be determined. It
would be expected, therefore, and it is true, that with proper interpreta-
tion the step-function response is a powerful and useful criterion of over-
all system quality.

In some applications the input signals are periodic and can be analyzed
into a small number of primary harmonic components. In such cases
the performance of the servo system can be specified conveniently by
stating the response characteristics of the system to sinusoidal inputs of
these particularly important frequencies. With the increased use of
sinusoidal steady-state techniques in the analysis and testing of servo-
mechanisms, it has become fairly common to specify the desired frequency
response of the system, that is, the magnitude and phase of the ratio of
the output 60 to the input Oras a function of frequency—rather than at
several discrete frequencies. If the system is linear, its performance is
completely described by such a specification, as it is by specification of
the response to a step function. Depending upon the particular applica-
tion and the nature of the input signals, one or the other type of specifica-
tion may be easier to apply,

In any practical case a servo performance will be required to meet con-
ditions other than that of the accuracy with which it is to follow a given
input under standard conditions. The top speed of a servomechanism,
such as will arise in slewing a gun or in locking a follow-up mechanism into
synchronism, may far exceed the maximum speed during actual iollow-up
applications. It is sometimes necessary to specify the limits of speed
between which it must operate—the maximum speed and minimum
desirable speed unaccompanied by jump. For example, a gun-director
servo system may be required to have a slewing speed of 60° per second,
a top speed during actual following of 20° per second, and a minimum
speed of O.O1°per second. The ratio of maximum to minimum foll~,,.ing
speed is here 2000. This speed ratio constitutes one criterion of goodness
of a servo system.
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In certain applications (for example, the control of the cutting head
of a large planer or boring mill or of the radar antenna aboard a ship) the
transient loading on the output member of the servomechanism may be
very high. Under these circumstances, a small error in the output should
result in the application of nearly the full torque of the motor; indeed,
considerations of transient load may require a source of power far in
excess of the dynamic load itself. It is generally true in high-performance
servomechanisms that almost the entire initial load comes from the
armature or rotating element of the motor itself. Better designs of
servomotors have tended to increase the ratio of torque to inertia of the
motor rotor.

Three other practical factors are important in the design of good
servomechanisms and are hence often included in specifications: (1)
backlash, (2) static friction, and (3) locking mechanisms. Backlash
cannot be analyzed by a consideration of linear systems, because the
backlash destroys the exact linearity of a system. Practical experience
has shown that the backlash of the mechanical and electrical components
limits the static performance of a servo system. Backlash may occur
in gear trains, in linkages, or in electrical and magnetic error-sensitive
devices. Backlash often has the unfortunate effect of limiting the gain
around the loop of a servo system, thereby reducing its over-all effective-
ness. Increase in the gain of a servo system invariably rmults in oscilla-
tions of the order of the backlash; the higher the gain the higher the
frequency of these oscillations. The increased frcqucncics of oscillation
are accompanied by excessive forces that cause wear and sometimes
damage.

Static friction has the same discontinuous character as backlash,
If the static friction is high compared with the coulomb friction within the
minimum specified speed, extreme jumpiness in the servo performance will
result. The error signal will have to buildup to a magnitude adequate to
overcome the static friction (sometimes called stiction). At this instant
the restraining forces are suddenly diminished and the servo tends to
overshoot its mark.

Locking mechanisms, such as low-efficiency .gcars or worm drives, are
troublesome in servomechanisms where transient loads arc encountered.
The effect is that of high static friction, emphasized by the resulting
immobility of the device.

It is impossible to construct high-fldclity servomechanisms if mechani-
cal rigidity is not maintained in shafting and gearing. ‘1’hc introduction
of mechanical elements with natural fmqucncy comparable to frequencies
encountered in the input is equivalent to introducing additional filters
into the loop. If such filters are dclibcratcly put in to produce stability,
such design may be justified. Unfortunately, it is true that mechanical
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elements in resonant structures undergo tremendous dynamic forces
which may far exceed the stalled-torque loading on the elements. It is
generally desirable to specify, asaportionof design criteria, themechani-
cal resonant frequency of the system.

Another practical consideration in servomechanism design arises from
the low power level of the input to the amplifiers. Except under extreme
conditions, the error signal is small and the gain of the amplifier may be
higher than one million. If, for example, the feedback mechanism con-
sists of electrical elements that may pick up stray voltages or generate
harmonics because of nonlinear elements in the circuits, these spurious
voltages may exceed the error signal required for the minimum specified
servo speed and, unless supressed, may even overload the amplifier.

The application of servomechanisms to the automatic tracking of
planes by radar and the application of filter theory to the smoothing of
observed data in general for gunnery purposes have brought to light the
need for considering the effects of noise in the system; this too must at
times be included in the performance specifications. In the case of the
automatic tracking of planes by radar (see Chaps. 4, 6, and 7), a radar
antenna mount is made to position itself in line with the target. The
antenna beam illuminates the target, and the reflections from the target
are received by the same antenna mount that transmits the signal. The
beam is made to scan in a cone at 30 CPS,in such a manner that the signal
would come back at a constant signal strength if the target were in the
center of the beam. If, on the other hand, the antenna mount points to
one side of the target, the reflected signal is modulated at 30 cps. The
phase and amplitude of this modulation is the error signal; the phase
giving the direction and the amplitude the amount of the error. The
phase and amplitude are resolved into cx-rors in elevation and traverse
and are used to actuate the servoamplifiers and servomotors on the anten-
na mount. Were it not for the fact that the reflections from the plane
fade in rather haphazard ways, the servo problem would be of the usual
type. The presence of the fading in the error-transmission system,
however, makes necessary careful design of the system, with due regard
for the frequency distribution and magnitude of the fading. For exam-
ple, if the fading were characterized by a frequency of 5 cps, it would be
necessary to design the servo loop in such a way that at 5 cps the response
of the system would be either zero or very small. This is, fortunately, a
reasonable step, since no plane being tracked will oscillate with such a
frequency. If the fading should cover the spectrum from 5 cps to all
higher frequencies, then the frequency response of the servo system would
have to be equivalent to a low-pass filter with cutoff somewhat below
5 cps. On the other hand, the attenuation of the higher frequench in
the response of the servo system is invariably accompanied by the intro-
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duction of acceleration errors; for a fixed amplitude, acceleration goes up
as the square of the frequency. Such a system becomes sluggish and may
not follow a plane undergoing evasive tactics. A compromise must be
made between suppression of the fading and accurate following of the
actual motion of the target. Methods by which this can be done are
discussed in Chaps. 6 to 8.

There sometimes arises the problem of designing the best possible
servo system of a given order of complexity to meet a given need. This is
the subject of the second part of the book. The practice before the war
in the design of servos was to employ a mechanism adequate for the prob-
lem. The difficult problems encountered in the war, particularly in the
field of fire control, emphasize the necessity of designing the best possible

servo system consistent with a given kind of mechanism. It is not easy
to give a statement of what is the best performance. It has been com-
mon practice (though not a desirable one) to specify servo performance
in terms of the response, say at two frequencies, and to omit any state-
ment about the stability of the system in the presence of large transients.
It is obvious that a system designed to meet these specifications will not
necessarily be the best possible servo if the input contains frequencies
other than the two specified ones. Indeed, systems designed to a specifi-
cation of this type have shown such high instability at high frequencies
as to be almost useless in the presence of large transients.

If it is desired to design a “best possible servo, ” it is necessary to
define a criterion of goodness. Hall’ and Phillips’ have independently
applied the criterion that the rms error in the following will be minimized
by the “ best” servo. For a full statement of the performance of such a
servo it is also necessary to describe the input for which the rms error is
minimized. In the case of the previous example of automatic radar
tracking of an airplane, the problem was to track an airplane on physi-
cally realizable courses of the type to be expected in the presence of anti-
~ircraft fire. The input, to the servo drives of the antenna mount, except
for fading, might be the instantaneous coordinates of the plane flying any
one of a large number of paths, approximated as consisting of straight
segments; the character of the fading can be observed in a number of
trial runs with the radar set to be used. The order of the differential
equation describing the servo system was fixed by the characteristics of
the amplidyne, the d-c drive motors, and the amplifier. The problem
was to deterrriine the proper value of the parameters available for adjust-
ment in the amplifier in such a way that therms error, averaged over the
many straight-line courses of the target, should be a minimum. The usc

1A. C. Hall, The Analysis and Synthrsis qf Linear Seruo?nxc?wnisms,Technology
Press,MassachlmwttsTnstituteof Technology, May 1943.

z 11,S. l%illips, ‘1St,rvomrcha~lislns,”RI, Report No. 372, nay 11, 1943.
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of the rms-error criterion in this problem is justified principally by the
fact that it lends itself to mathematical analysis. It is obviously not
the best criterion for all types of problems; it gives too great an emphasis
to large momentary errors. In the antiaircraft case, large momentary
errors might correspond to one or two wild shots. Obviously, it is better
to have one or two wild shots, with all the rest close, than to have all
shots fall ineffectively with a moderate error. A better working criterion
has not yet been developed.

The rms criterion of goodness is particularly useful because it permits
one to take into account the presence of noise, provided only that the
frequency characteristic or the ‘‘ aut ocorrelation function” of the noise
is known. The analysis given in the latter part of this book, although
difficult for practical designers, is important in industrial applications
where transient loading has definite characteristics and where best
performance is economically necessary. The loading constitutes in effect
a noise and can be treated by the methods there developed.



CHAPTER 2

MATHEMATICAL BACKGROUND

INTRODUCTION

This chapter will bc clcvoted to n discussion of the mathematical
concepts and techniques th:~t mm fundamental in the theory of servo-
mechanisms. These ideas ~rill, for thcl most, ~x~rt,bc dm”eloped in their
relation to filters, of which servomrch:misrns form a sprcizl class. More
specifically, the chapter will bc concerned ~vith the }v:lys in \~hich the
behavior of linear filters in general and sclvomc(,llallisll~s in particular
can be described and \vith making clear the relations bctwccn the various
modes of description. 1

The input and output of a filter arc often rrlatcd by a differential

equation, the solution of ~~hich gives the output for any given input.
This equation provides a complctc description of the filter, but one that
cannot be conveniently used in dmign techniques. Other modes of
description of the filter are related to the outputs produced by special
types of input:

1. The wcighiing function is the filter output produced by an impulse
input and is simply related to the output produced by a step input.

2. The frequency-wsponse f~tnclion relates a sinusoidal input to the
output that it produces,

3. The transfer junction is a generalization of the frequency-response
function.

These modes of description are simply related, and each offers advantages
in different fields of application.

Discussion of these ideas requires the use of mathematical devices
such as the Fourier transform and the Laplace transform. For complete
dkcussions of these techniques the reader must be referred to standard
texts; for his convenience, however, certain basic ideas are “here presented.
Although it has not been intended that the analysis of the chapter should
be carried through with maximum rigor, the reader w-illobserve that some
pains have been taken to provide a logical development of the ideas.

1The authors wish to acknowledgehelpful discussionswith W. Hurewicz in the
planningof this chapter.
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This development is illustrated by application to lumped-constant filters,
in terms of ~vhich the relations here discussed are especially easy to
understand.

Particular attention has been paid to the discussion of stability of
liltersj which is of special importance in its application to servomecha-
nisms. The latter part of the chapter is devoted to a discussion of the
Nyquist stability criterion and its application to single-loop- and multi-
Ioop-feedback systems. Parallel developments in the case of pulsed
filters will be found in Chap, 5.

FILTERS

2.1. Lumped-constant Filters.—The most familiar type of filter is the
electrical filter consisting of a network of a finite number of lumped
resistances, capacitances, and inductances with constant values. Figure

21 illustrates a particularly simple filter of this
type—an RC-filter consisting of a single resistance

~a,”,,, Rand asinglecapacitanceC.I o The input to an electrical filter is a voltage
~1~ ~.l,_alI, ~C-filte, E,(t) supplied by a source that may be taken to

have zero internal impedance; the output is an
open-circuit voltage Eo(t).
equation. In the case of
derived form

Input and output are related by a differential
the RC-filter of Fig. 2.1 this has the easily

~dEo ~ ~O=E,
dt ‘ ‘

(1)

where the quantity T = RC’ is the time constant of the network. In
general, the input and o~~tput are related by

~ , dnEo &lEO
, ~ + a,,-l —

dmE,
~tn-, + “ “ . + (IOE. = h. ~

+bm_, ~+... + boE,, (2)

where the a’s ~.nd b’s are constants and m, n s 2.V, N being the number
of independent loops in the filter network (including one loop through the
.Joltage source but none through the output circuit).

Since this formulation is less common than that in terms of mesh
currents, it may be desirable to indicate its derivation. In a N-mesh
network of general form, the mesh currents are determined by integro-dif-
ferential equations which may be written’ as

1See,for instance,E. A. C,uillemin,Communication.Vehoorks,Vol. I, Wiley, New
York, 1931,p. 139.
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aLI~I+ a12~2+ u13i3+ “ + al.~ix = E,,
ac,il + azziz + a?sij + + a*.ViN = 0,

. . . . . . .

1

(3]

a,~lil + a.~~ij + a.\-3i3 + . . + a.v&riN= O,

~rhere i~ is the current in the kth mesh and

(4)

Thr output voltage is determined by the mesh currents, through an equa-
tion of the form

a.v+l,t i, + fh+l,: i, + + av+l,.,r iN = Eo. (5)

Ikluations (3) and (5) may be regarded as N + 1 equations in the 3N
(Iuantitics dil/dt, il, f dt i~, (k = 1, 2, . . . , N). To eliminate such
quantities from consideration and to obtain a direct relation between 11~
and E,, one may form the first 2N derivatives ~vith respect to time of
thesr .V + 1 equations. One has then, in all, (2N + 1) (N + 1) equa-
tions in the N(2.V + 3) quantities

‘1’hcw equations in~-olve also Eo, E,, and their first 2N derivatives;
bett~mn them one can allvays eliminate the unknown mesh currents and
their dcrivati~-es, obtaining a linear relation between Er, Eo, and their
first 2.$’ deri~-atives, If some of the quantities Ljk, R~k, and C;~ are zero,
it may not bc nw.-cssary to take so large a number of derivatives in order
to climinat c the unknoum current quantities; m and n may then be less
than 2N, as they were found to be in Eq. (1).1

JVhen the input voltage E,(t) is specified, Eq. (2) constitutes a non-
homogeneous linem differential equation that can be solved to determine
Eo(t). The general solution of such an equation can be expressed as

I If one rxcludes negative values of L, 1?,,and C from consideration (that is.
dcak \vitll:Lpzssive filter), then nOequationwill contain a term in di~/dt, i~,or Jdti~
unlessa siulilartermoccurs iu the kth loop equation; this applies,in particular,to the
output equ:ltiou Eq, [5). It follows that ~vhcuone differentiatesEqs. (3) to obtain
uew rqu~tiolls with ~vhichto eliminate current variables, one obtains at least as
many new current variables as new equations. One cm increase the number of
equatiousas comparedwith the number of currentvariablesonly by differentiating
Eq. (5) and wltb it a sufficientnumberof Eqs. (3) to make possibleeliminationof all
theuetvvariables: this may or may not requiredifferentiationof the firstof Eqs. (3),
The number of derivativesof ECIthat must be introducedin order to eliminateall
current variables is thus equal to the original excess of variables over equations
requiredfor their elimination; the number of derivativesof E, that must be intro-
ducedmay be equal to this but need never be larger. Thus in the resultantEq, (’z)
me will have n z m.
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thesum of any solution of the nonhomogeneous equation, plus the general
solution of the homogeneous equation obtained by setting equal to zero
all terms in El:

dm.li’o d,,–lfio

an ““al”
-+o,L-, =+. ..+aOEo=O.

In the particular case of the IiC-filter described by l;q. (1)
solution may be \vrittcn fis

E.(t) = .4C ~ + ~
/

1–,——
~, : d7 E,(T)c ~ ,

(6)

the general

(7)

\rherethe first term is the gcucral solution of the homogeneous equation
,

T(~+Eo=O (8)

and the sccoud is a particular solution of the nonhomogeneous Eq. (1),
as is easily verified by substitution into that equation.

To dctm-mine the output voltage E,)(t) it is necessary to know both the
input function E~(t) and t,hc adjustalic constants in the general solution
of the homogeneous equ:~tiou. Thrsc latter constants are determined by

the initial conditions of the problcm. One set of initial conditions is
espcei:dly emphasized in what follol~s: thc condition that the system
start from rest when the input, is first applied. The resultant output of
the filter under this condition will bc termed its normal wsponse to the
specified input. In the case of Eq. (7), the condition that Eo(t) = o

at t = O implies .i = O; the normal response of this filter to an input.
E,(t) beginning at t = O is thus

or, by a change in the variable of integration,

(9(2)

(9b)

2.2. Normal Modes of a Lumped-constant Filter.—The solutions of
the homogeneous differential equation [Eq. (6)] are of considerable inter-
est for the discussion of the general behavior of the filter. The filter
output during any period in which the input is identically zero is a sohl-
tion of this homogeneous equation, since during this time Eq. (2) reduces
to Eq. (6). The output during any period in which the input E, is con-
stant can be expressed as the sum of a constant response to this constant,
input,

E. = $ E, ( 10)
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(this being a solution of the nonhomogeneous equation), and a suitable
solution of Eq. (6). In this case the solution of the homogeneous equa-
tion can be termed the “transient response” of the filter to the earlier
history of its input. Transient response can, of course, be defined more
generally, whenever the input after a given time tOtakes on a steady-state
form: The transient response of the filter is the difference between the
actual output of the filter for t > toand the asymptotic form that it
approaches. This asymptotic form is necessarily a solution of the non-
homogeneous Eq. (2); the transient is a solution of the homogeneous Eq.
(6).’

The general solution of Eq. (6) is a linear combination of n special
solutions, called the normal modes of the filter; these have the form

where k is an integer and pi is a complex constant. The general form of
the solution is then

E. = C,h,(t) + C,h,(t) + ~ + Cfih.(t); (12)

the values of the constants ci depend on the initial conditions of the solu-
tion or on the past history of the filter.

To determine the normal-mode solutions, let us try c“’ as a solution of
Eq. (6). On substitution of e@ for E., this equation becomes

(anp” + an-,p”-’ + + aO)@’ = O. (13a)

Thus ep’ is a solution of the differential equation if

P(p) = anpn + a.-lp”-’ + . . ~ + a. = (). (13b)

This equation has n roots, corresponding to the n normal modes. If all
n roots of this equation, PI, PZ,,P3, . . . ~P.~ are distinct, then all normal-
mode solutions are of the form e@; if pi is an s-fold root, it can be shown
(see, for instance, Sec. 2“19) that the s corresponding normal-mode solu-
tions are

eP,t, ~eP,t, pe,r’,i . . . , t“–lcp,t.

Let us denote the possibly complex value of pi by

pi = CXi+ j@i, (14)

where ai and u~are real. If pi is real, the normal-mode solution is real:

hi(t) = .Pe”J. (15)

If pi is complex, its complex conjugate pf will also be a solution of Eq.

1It may be emphasizedthat the normal responseof a filteris its complete response
to an input, under the condition that it start from rest; the normrdresponsemay
includea transientresponseas a part.
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(13b), since the coefficients ak are real valued; the normal-mode solutions
defined above will be complex but will occur in the transient solution in
linear combinations that are real:

If pi is purely imaginary there maybe purely sinusoidal transients: sin ~it,
Cos d.

It will be noted that the normal-mode solution will approach zero
exponentially with increasing t if pihas a negative real part but will
increase indefinite y if the real part of piis positive. If all the solutions
of Eq. (13b) have negative real parts, the transient response of the filter
will always die out exponentially after the input assumes a constant
value; the filter is then stable. 1 This may not be so if any pi has a posi-
tive real part; when it is possible for some input to excite a normal mode
with positive ai, then the output of the filter may increase indefinitely
with time-the filter is then unstable. It may also happen that the real
part of pi vanishes. If this root is multiple, there will be a normal mode
that increases indefinitely with time and will lead to instability of the
filter if it can be excited. If the imaginary root pi is simple, the normal
mode is sinusoidal; the system may remain in undamped oscillation after
this mode has been excited. It is physically obvious that in such a case
a continuing input at the frequency of the undamped oscillation will
produce an output that oscillates with indefinitely increasing amplitude.
In the precise sense of the word, as defined in Sec. 2.8, such a filter is
unstable. In summary, then, we see that a lumped-constant filter con-
sisting of fixed elements is certainly stable if all roots of Eq. ( 13b) have
negative real parts, but may be unstable if any root has a zero or positive
real part.

2.3. Linear Filters.-The lumped-constant filters discussed in the pre-
ceding sections belong to the more general class of ‘‘ linear filters. ”
Linear filters are characterized by properties of the normal response—
properties that may be observed in the normal response of the RC-filter
of Sec. 2.1:

(9b)

1 The words “stable” and “unstable” are used here in a general descriptive sense.
We shall later consider the stability of filters in more detail and with greater generality
and precision; the ideas here expressed are intended only for the orientation of the
reader.
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These are

1.

2.

3.

The normal response is a linear function of the input, in the
mathematical sense. If y,(t) is the normal response of the
filter to the input x,(t) and y,(t) is the normal response to the input
Q(t), then the normal response to the input

z(t) = Clzl(t) + C2Z2(L) (17)

(cl and CZbeing arbitrary constants) is

y(t) = C,y,(t) + C,y,(t). (18)

The normal response at any time depends only on the past values
of the input.
The normal response is independent of the time origin. That is.
if y(t) is the no~mal response-to an input z(t), then y(t + tO)is the
normal response to the input x(t + i’0). ‘1’his requirement is,
essentially, that the circuit elements shall have values mdependent
of time. This constitutes a limitation, though not a serious one,
on the types of filters that we shall consider.

It should be pointed out that although few practical filters are strictly
linear, most filters have approximately this behavior over a range of
values of the input. Consequently, the idealization of a linear system is
widely useful and does lead to valuable predictions of the behavior of
practical systems.

:~: &
FIG.22.-A filterin FIG.2.3.—CurrentI througha

which the capacity is a diode rectifieras a functionof the
functionof time. potcntial cliffcrence V betweenan-

ode and cathode.

It should be emphasized that the requirement of linear superposition
of responses (Item 1 above) does not suffice to define a linear filter; the
circuit elements must also be constant in time. .4n example of a “non-
linear” filter can be derived from the filter of Fig. 2.1 by making the
capacity change in time—as by connecting one of the plates of the con-
denser through a link to the shaft of a motor (Fig. 2.2). In spite of the
fact that the superposition theorem [Eqs. (17) and (18)] applies to this
filter, it is not linear, and its normal response cannot be written in an
integral form such as Eq. (9b).

An example of a filter that is nonlinear in the conventional sense is
the familiar diode rectifier. The current through the diode and the out-
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put voltage is different from zero only when the potential difference
between theanode andcathode ispositive(Flg. 2“3). The superposition

theorem above does not hold for this system.
Input output For example, if z,(t) = A, a constant, and

zz(f) = A sin tit,.it is easy to see that the com-
bined output to z,(t) + z,(t)is not the sum of

FIG.2.4.—Amechanical61ter,
the outputs due to z,(t) and z,(t) separately.

An example of a mechanical filter is sketched in Fig. 2.4. The input
and output shafts are connected through a spring and flywheel; the fly-
wheel is provided with damping that is proportional to its speed of rota-
tion. Such a filter can be made to be linear, at least for small angular
displacements of the input and output shafts.

THE WEIGHTING FUNCTION

It will be noted that the relation

(9b)

expresses the output of a particular linear filter as a weighted mean of all
past values of the input; more precisely, the input at a time t – r con-

.
tributes to the output at time t with a relative weight e-~ that is a func-
tion of the elapsed time interval r. (It must be remembered that in this
example EI(t) = O if t < O.) This method of relating the input and
output of a filter by a weighting junction is generally applicable to linear
filters and is of great importance. The weighting function itself is closely
related to the normal response of the filter to an impulse input. We
shall begin, then, by considering the normal response of linear filters to
this particular type of input.

2.4. Normal Response of a Linear Filter to a Unit-impulse Input.—
The unit impulse or delta function 6(f – @ is a singular function defined
to be zero everywhere except at t = to,and to be infinite at t= toin such
a way that it possesses the following integral properties (tl< fz):

\

12

lit j(i) l$(t – to) = o if tl> toor tZ < to, (19a)
c1

/

i,
dt j(t) 6(t – to) = ZU(to) if tO = tI or tO= t% (19b)

t,

/

i,
d j(t)6(t– to)= f(h) if tl< to< h. (19C)

1,

The function /i(t – f,) may be considered as the limit of a continuous
function 6a(t– to)that is symmetrical in t about the point t= toand
depends upon a parameter a in such a way that
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!

+.
dt a.(f – to) = 1,

—.
lim C$=(t– tO) = O if t # .tO.
a+Q

Examples of such functions are

INPUT 31

(20a)

(20b)

(21)

as a approaches zero, these functions tend to take on the properties
assigned to the unit-impulse function.

The normal response of a linear filter to a unit impulse applied at the
time t = O is denoted by W(t); it will be called the weighting junction, for
reasons to be made evident later. lVe have, of course,

W’(t) = o ift <O. (22)

The weighting function may be discontinuous and may even include
terms of the delta-function type for to z O.

The normal response of a linear lumped-constant filter to an impulse
input can be determined by consideration of the governing differential
equation [Eq. (2)]. After the moment of the impulse, E[ will be zero,
and the response W(t) must be a solution of the homogeneous differential
equation [Eq. (6)]; that is, it must be a linear combination of the normal
modes of the filter. At the moment of the impulse W(t) may be dis-
continuous; it will even contain a term of the form C6(f) when the filter is
such that the output contains a term proportional to the input.

In the case of the simple RC-filter described by Eq. (1) there is only
one normal mode,

hl = e–$,

and the weighting function is of the form

W(t) = Ae-+, t>o,

w(t) = o, t<o. 1

One can determine the constant A by integrating Eq. (1) from
with EO = w(t) and El = ~(t) this becomes

/

t

J

t
NV(t) + d, W(,) = dr ~(r).

—. —m

(23)

(24)

m to t;

(25)



[SEC.2432 MATHEMATICAL BA G’KGROUND

If t >0, we have, by Eqs. (19c) and (24),

TAe-~ – AT(e-~ – 1) = 1, (26a)
whence

A=+. (26b)

The form of W(t) can be determined by similar methods when there is
more than one normal mode. Another method of solution, employing
the Laplace transform, will be indicated in Sec. 2.19.

The normal response to a unit impulse can also be determined from
an integral formulation of the response to a general input. In the case
of our simrde RC-filter, one would start with Eq. (9a). The normal
response to a unit impulse at time tO > 0 becomes

/

1 t–,
E.(t) = ; ~

——
J(t – tO)e ~ d7.

then, by Eqs. (19),
~ _f+

E.(t) = ~e , t > to,

E.(t) = o, t < to. I

It follows that for this filter

w(t) = + e-i t>o,

w(t) = o, t<o. I

‘I’his function is shown as curve a in Fig. 25.
The RC-filter shown in Fig. 2.6 has a delta-function term

‘k ‘veigh’ing~~~~~~iis

mined by the differential equation

o .!- where

(27)

(28)

(29)

in its
deter-

(30)

FIG. 2.5.—The normal re-
sponseof the circuitof Fig. 2.1 ~, = Rt7. (31)
with T = 1 (a) to a unit-
impulseinput at t = Oand @) The normal-response solution of this equation
to a unit-stepinputstartingat
t=o.

for an input E, that begins after time t = O
is

/

t–,——
do(t)= .Er(t)– * : dr ll,(7)e “ (32)

as can be verified by substitution into Eq. (30). The response of this
filter to the impulse input

E,(t) = 6(1 – tO), to >0, (33)
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is then
1 -’+0

E.(t) = a(t– to) –~le ,

it follows that

(34)

(35)

In the discussion that follows we shall consider the weighting function
W(t) as a primary characteristic of a filter rather
than as a derived quantity to be obtained, say, by -c
solution of a clifferent ial equation. Experimen-

3

tally, it is sometimes practical to obtain the weight- E, (t) R E“(t)

ing function by recording the response of the filter
when a large input is suddenly applied and re- FIG. 26.-An RC-
moved. (It is, of course, essential that this input filter with a delta-func-

tion termin the weight-
should not overload the system. ) When this is ing function.
done, the time duration of the input pulse At should
be short compared with any of the natural periods of the filter; that is,
one should have

AtdW’(t)
~ << w(t) (36)

for all t. Otherwise, small variations in W(t) may be obscured. An
alternative method for the experimental determination of W(t) will be
indicated in Sec. 2“7.

2.6. Normal Response of a Linear Filter to an kbitrary Input.—The
normal response of a linear filter to an arbitrary bounded input El(t)

M

with at most a finite number of discontinui-
ties can be conveniently expressed in terms of
the response to a unit-impulse input. We

E,(t) , (tl) shall assume that Ill(t) = O when t < 0.
This function can be approximated by a set

t, r+
t- of rectangles as shown in Fig. 2“7. In com-

FIG. 2.7.—Approximation puting its effect on the filter output, the por-
of a functionEl(t) by a setof tion of the input represented by a very narrow
rectangles. rectangle of width At1 and height El(tl), at
mean time tl, can be approximated by the impulse input EI(~l) A~l~(t — ~1);
the ability of a filter with a finite response time to distinguish between a
true impulse input and a pulse of duration At with the same time integral
diminishes as At approaches zero. One is thus led to approximate the
input El(i) by a sum of impulses:

E,(t)= y E,(t.)Atn b(t - tn). (37)
L
n
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The normal response of a linear filter to a succession of impulse inputs
will (by the definition of linearity) be the sum of the responses to each of
these inputs. We have now to sum the responses to the incremental
inputs of the rectangular decomposition of El(t) given by Eq. (37); the
resultant sum will approximate the normal response EO(t) to the input
E,(t).

Let us first split off from the weighting function any delta-function
singularities, writing

where 0<rl<7z <... , and We(t) is a bounded but not necessarily
continuous weighting function. To a unit-impulse input at time t = O
this filter gives a bounded output WO(t), plus impulse outputs at times
t= O, TI, TZ, . . . , with relatlve magrutudes CO,CI, CZ, . . . . Thesd
parts of the filter Tesponse can bc considered separately.

The significance of the delta-function terms in the weighting function
is easily appreciated. If there is a term co b(t), the filter gives in response
to an impulse input a simultaneous impulse output with magnitude
changed by a factor co; in response to an arbitrary input l?~(t) it gives an
output coEI(t). Similarly, corresponding to the term cl~(t — TI) in
the weighting function there is a term CIEJ(t – Tl) in the response to
the input E,(t).

Now let us consider the part of the filter response associated with the
bounded function W’O(t). This part of the response to an impulse input
d(t – tJ at time tl is given by WO(t– t,);the response to a differential
input EI(tl) d(t — tl) Ml is thus E{(tl) WO(t — tl) Ml, and the correspond-
ing response of the filter to the approximate input [Eq. (37)] is

In the limit as the At’s approach zero, this becomes

f
md, E,(t,)W,(t – t,),

o

the exact output due to the bounded part of the weighting function.
Since W,(t) vanishes for negative values of the argument, we may take
the upper limit of the integral at tl = t, and write

/

t
E.(t) = c,E,(t) + c,E,(t – T,) + “ . . + dt, E,(t,)WO(f – t,). (39)

o

This representation will be valid even when the input contains impulses
occurring between the time Oand t. A more compact and more generally
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useful form is

THE WEIGHTING FUNCTION

/

t+
E.(f) = d, Il,(tl)w (i – t,).

o

35

(40)

Each delta-function term in the weighting function gives rise to one of
the terms appearing before the integral sign in Eq. (39). When the
weighting function cent ains the delta funct ion C08(t), it is necessary to
indicate the upper limit of the integral as t+ (that is, t approached from
above) in order to include the whole term co.El(t) in the response rather
than just half of it. The more compact notation also requires that one
write

/

i,+A
d(, a(t, – t,) J(t – t,) = J(t – h) (41)

f,– A

when there are delta functions in both the input and weighting functions.
On introduction of the new variable of integration

T=t —tl, (42)

we have

/

t
Eo(t) = d, E,(t – r)?V(r).

o–
(43)

This gives the normal response to an arbitrary input as an integral over
the past values of the input, each of these values being weighted by the
response of the filter to a unit-impulse function.

Equation (9b) illustrates this result in a special case in which W(t) is
given by Eq. (29); Eq. (9a) is similarly a special case of Eq. (40).

2.6. The Weighting Function.—The weighting function provides a
complete characterization of the filter. As we have seen, the normal
response to any input can be computed by means of the weighting func-
tion. In addition, from the weighting function of a lumped-constant
filter one can determine the normal modes of the filter, these being the
terms of the form Pe”,t into which W(t) can be resolved.

The weighting function expresses quite directly what may be called
the “memory” of the filter, that is, the extent to which the distant past
of the input affects the response at any time. This is evident in the
width of the weighting function; the “memory” may be termed long or
short according to whether the weighting function is broad or narrow.

The “memory” determines the distortion with which the filter output
reproduces the input to the filter; the filter will reproduce well an input
that changes but little within the length of the memory of the filter, but it
will distort and smooth out changes in the input that take place in a
period small compared with the memory. Another aspect of the memory
is the lag introduced by the filter. If the input is suddenly changed to a
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new value, the output acquires the corresponding new value only after
a period of lag determined by the width of the weighting function.

Examples.—We have already examined the weighting functions of
two simple l?C-filters, as given by Eqs. (29) and (35).

‘I%’”‘@IfW?=
FIG.2.S.—(a) AnLC-filter;(b) theweightingfunctionof thecircuitshownin (a)

The differential equation for a filter consisting of an inductance L

and capacity C, as shown in Fig. 2.8a, is

(44)

The weighting function is sinusoidal fort >0, with the angular frequency
a“ :

W(t) = CO=sin ant; (45)

this is sketched in Fig. 2.8b.
A filter with feecf~ack,

w(t)

o

w(t)

o

w(1)

n t+
I:lci.2.9.—\\-cighti]lgfunct-

ion of a simpletir!vorlmctlan-
isl]l for different relative
valuesof the con~tants.

‘(t) = (1

such as the servo illustrated in Fig. 1.3, may
be governed by the differential equation

( )T~+~+K 00= K&,
(it’ dt

(46)

where K is a constant. The weighting func-
tion for this filter will be derived by applica-
tion of Laplace transform methods in Sec. 2.17.
The results are as follows. Let

(47a)

(47b)

‘l’he quantities w and ~ are called the un-
damped natural frequency and the damping
ratio, respectively. When ~ < 1, the system
is underdamped, and the weighting function is

% sm [(1 — ~z)W+J].—*T, ,g-r.rd (48)—

When ( = 1, the system is critically damped; the weighting function is

w’(t)= @;te-~”’. (49)
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When ~ >1, the system is overdamped, and

w(t) = ~–ru.t ~(p-l)%.t _ ~–(r%)%q.
2((2U: 1))5 [ (50)

These three forms of the weighting function are illustrated in Fig. 2.9.
2.7. Normal Response to a Unit-step Input.—The unit-step function

u(t) is defined as follows:

u(t) = o ifi <O,
u(t) = 1 ift~O. }

(51)

The normal response of a filter to a unit-step input is closely related
to its weighting function. In particular, the normal response to a unit
step at time t = O is, by Eq. (43),

/

1
u(t) = d, w(,). (52)

o–

Just as the unit-step function is
the integral of the unit-impulse
function, so the response to a unit-
step input is the integral of the
response to the unit-impulse in-

3=E?=
1-

FIG. 2.10.—.4pproximationof a funrtion
.EI(t)by a setof stepfunctions.

pu~. Conversely, the ~~eighting function of a filter can be cletermined
experimentally as the derivative of the output produced by a unit-step
input. The form of the function U(t) for the RC-filter of Fig. 2.1 is
illustrated in Fig. 2.5.

Let us assume that both E,(t)and W(t) are well-behaved functions,
with E~(t) making an abrupt jump from the value O to E1(0) at time
t = O. Integrating Eq. (43) by parts, we obtain

t

/(
t

E.(t) = EI(t – 7) U(T) –
)

d. : E,(t – 7) u(,), (53a)
o– o–

/

t
E.(f) = E,(o) U(t) + dr E:(f – ~) U(r), (53b)

o–

/

f+
Eo(t) = E,(O) U(t) + dt,ll; (t,) Z? ’(t– t,), (53C)

o

where the prime is used to denote the derivative ~~ithrespect to the indi-
cated argument. The output of the filter is here expressed as the sum
of responses to the step functions into which the arbitrary input can be
resolved (see Fig. 2.10): an initial step of magnitude El(O) at time t = O

and a continuous distribution of infinitesimal steps of aggregate amount
E~(tJAtl in the interval Atl about the time tl. The corresponding forms
of the relation when El has other discontinuities or U increases stepwise
(,W contains delta functions) will need no discussion here.
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2.8. Stable and Unstable Filters.-Thus far in the discussion of the
weighting function we have made no distinction between stable and
unstable filters. This was possible only because attention was restricted
to input functions that differ from zero only after some finite time. To
proceed further we must define stable and unstable filters. A stable

filter is one in which every bounded input produces a bounded output;
that is, the normal response of a stable filter never becomes infinitely
large unless the input does so. An unstable filter will give an indefinitely
increasing response to some particular bounded input, though not, in
general, to all such inputs.

The weighting function affords a means of determining whether a
given filter is stable or unstable, through the following criterion: .4 linear
jilter is stable if and only if the integral of the absolute ~alue of the

weighting junction, ~~ dr 1~(,)1, is jinite. Thus, the second of the

filters mentioned in Sec. 2.6 is unstable, since /1md. sin CW,ldoes noto
converge.

To prove that the convergence of this integral assures the stability of
the filter we need to show that if E1(t) is bounded, that is, if there is a
constant M such that IllI(t)]< M for all t,then Eo(t)is also bounded.
The filter output may be written

/

t
E.(t) = d, E,(t – T) W(,),

o–
(43)

since we restrict our attention to Er’s that are zero for negative values of
the argument. As the absolute value of an integral is certainly no greater
than the integral of the absolute value of the integrand, we have

/
pib(t)ls ‘ dr \E,(t – 7)l[W(~)l.

o–
(54)

The inequality is strengthened by putting in the upper bound for E,(t)
and extendhg the range of integration:

]Eo(t)] s M
\

m dr ]W(~) ]. (55)

Thus, if ~~ d, l~(T)l exists,-%(t)is~undd.
The proof of the second part of the stability criterion—that the filter

iS unstable if ~~ d, l~(T)l doesnot converge-is somewhat longer and
will be omitted here. It involves the construction of an input E,(t)
that will make Eo(t ) increase without limit, and is essentially the same as
the corresponding proof given, in the case of pulsed filters, in Sec. 5.3.
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The relation of this result to the earlier discussion (Sec. 2.2) of the
stability of linear lumped-constant filters is easily understood. We have
noted (Sec. 2“4) that the weighting function of such a filter is a linear
combination of its normal-mode functions,

w(t) = c, a(t) + C,h,(i) + C,h,(t) + . . . + Cnh.(t), (56)

the h’s being given by Eq. (11). Now the integral ~M lh(t)[ dtwillnot

converge for any normal-mode function hi that has w z O, nor can one
form any linear combination of these functions for which such an integral

converges. Thus the integral ~~ IW(t)l dt will converge if, and only if,

the weighting function contains no normal-mode function for which
c%2 0. Stability of the filter is thus assured if all the roots of Eq. (13b)
have negative real parts, in accord with the ideas of Sec. 2.2. on the
other hand, the filter may be stable even when there exist roots with
nonnegative real parts if the corresponding undamped normal modes do
not appear in the weighting function, that is, if they are not excited by
an impulse input. Since any input can be expressed as a sum of impulse
inputs, this is sufficient to assure that no undamped modes can be excited

by any input whatever. The convergence of ~~ lW(~)l d,asa criterion

of the stability of a filter is thus precise and complete; in effect, it offers
a method of determining what normal modes of a filter can be excited—
not merely what modes can conceivably exist.

Only when a filter is stable is it possible to speak with full generality
of its response to an input that starts indefinitely far in the past. We
have seen that for a bounded input E,(t) which vanishes for t <0, the
normal response is

I-t
E.(t) = ) E,(t – ,) W(,) d,.

o–
(43)

If E, has nonzero values when the argument is less than zero, the upper
limit of integration must be correspondingly extended; if the input began
in the indefinitely remote past, we must write

[

.
E.(t) = E,(t – T) W(,) d,.

o–
(57)

If the filter is stable—and hence if ~~ IW(,)I d, < W-thenthe integral

in Eq. (57) will converge for any bounded input. If, however, this exten.
sion of the limit is attempted in the case of an unstable filter, the resulting
integral may not converge. This corresponds, of course, to the possibility
that an unstable filter subject to an arbitrary input in the indefinitely
remote past may give, at any finite time, an infinittiy large output,
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We shall therefore apply Eq. (57) only in the treatment of stable
filters; in dealing with linear filters in general, and unstable ones in
particular, it \vill be nmxssary to usc an equation of the form of Eq. (43)
and only inputs that start at a finite time.

THE FREQUENCY-RESPONSEFUNCTION

To this point we have considered the response of a linear filter to two
special types of inputs-impulse and step inputs—and the related weight-
ing function by which the filter may be characterized. We now turn our
attention to another special type of input—the pure sinusoidal input—
and the related frequency-response function, which also serves to charac-
terize any stable linear filter.

We shall see that the response of a stable filter to a pure sinusoidal
input function is also sinusoidal, with the same frequency but generally
different amplitude and phase. The frequency-response function
expresses the relative amplitude and phase of input and output as func-
tions of frequency. It is defined only for stable filters, since a pure
sinusoidal input must start indefinitely far in the past and can thus be
considered only in connection with a stable filter. [The input

E,(t) = O, t<o,
E,(t) = A sin u,t, t>o, }

(58)

which might be applied to an unstable filter, is not a pure sinusoid but a
superposition of sinusoids with angular frequencies in a band about w]

The importance of the frequency-response function rests on the fact
that any function subject to certain relatively mild restrictions can be
writ ten as the sum of sinusoidal oscillations (See. 2.11). The response
of a linear filter can be expressed as a similar sum of responses to the
sinusoidal components of the input by means of the frequency-response
function, which relates corresponding components of input and output.

2.9. Response of a Stable Filter to a Sinusoidal Input.—1n dealing
with sinusoidal inputs and outputs it is convenient to use the complex
exponential notation. The general sinusoidal function of angular fre-
quency ~ can be represented by a linear combination of the functions
sin d and cos tit or, more compactly, by a cos (cot+ o), where a is the
~mplitude and @ the phase with respect to some reference time. An
even more compact notation is obtained by representing this sinusoid
by the complex exponential

A ~i~~= aei~eitit, (59)

of which a cos (at + O) is the real part. Here phase and amplitude are
represented together by the complex factor A = a.d~, of which a is the
magnitude and @ the phase. A change of amplitude by a factor b, together
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with a change of phase by A@, is then represented by multiplication of
the complex exponential by the complex number be’~$; this changes the
multiplier of eio~ to abejt++~~) and the real part of the whole expression
to ab cos (tit + @ + A@).

When a complex function is used to denote a filter input, a complex
expression for the output \vill result. Because of the linear property of
the filter, the real part of this complex output is the response of the filter
to the real part of the complex input, and similarly for the imaginary
parts of input and output. It is thus easy to interpret in real form the
results obtained by considering complex inputs.

Use of the complex notation makes it easy to prove that a sinusoidal
input to a stable filter gives rise to a sinusoidal output. I,et

EI(t)= Aei”’. (60)
Then, by Eq. (57), ~vehave

/

.
E.(t) = A dr ~iti(c-,) ~(T) (ml )

o–

((X)1)1

where W(7) is the weighting factor of the filter. For reasons that ~vill
be evident later we shall denote the convergent integral in Eq. (60b) by
Y(ju):

/

m
Y(ju) = dr e-i”’~~(T). (61)

o–

Then
Eo(t) = A Y(ju)eiU’. (62)

Thus the filter output is sinusoidal in time; it differs from the input by a
constant complex fact or Y (jw). For unstable filters the integral in Rq.
(61) will, in general, not converge.

Considered as a function of the angular frequency, Y(ju) is called the
frequency-response function. This function expresses the amplitude and
phase difference between a sinusoidal input at angular frequency u and
the response of the filter. The input amplitude is multiplied by the
factor

]Y(ju) I = [Y(ju) Y*(j@)]J+, (63)

and the phase is increased by

[

~ = tan_,~ Y(jcd) – Y*(jcO)

1j Y(ju) + Y“(jid) ‘
(64)

where the asterisk denotes the complex conjugate.
Experimentally, the frequency-response function of a filter can be

determined by comparing the amplitude and phase of sinusoidal inputs
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at various frequencies with the amplitude and phase of the corresponding
outputs. In order to compensate for the fact that any real input starts
at a finite time, it is necessary to regard as the response only that part of
the output in which the amplitude and phase do not change with time,
that is, the so-called “steady-state response. ”

2.10. Frequency-response Function of a Lumped-constant Filter.—
The frequency-response function of a lumped-constant filter is easily
determined from the differential equation of the filter. In this equation

d“Eo dn–lEO

a“ F + a“-’ dta-, + “ ‘ “ + a,Eo

we may set

E, = eiut,
Eo = Y(ja)e~@t. 1

We have then, on carrying out the differentiations,

[a.(ja)” + am--,(ju)”-’ + “ . + adze’”’
= [b~(jw)fi + bn-,(ju)~-’ +

whence

(65)

. ~ . + bO]e’-’, (66)

Y(ju) = bM(~~)m + bm.-,(.h)m-’ + . ~ + b,
an(jo)” + an_l(ju)n–l + . . + aO”

(67)

The frequency-response function of such a filter is thus a rational func-
tion, the ratio of two polynomials in ju with coefficients that appear
directly in the differential equation.

I

b~lYtiw)l

o
w +(: .

(a) -92 [b)

Fm. 2.1l.—(a) Theamplitudeamplificationand(b)thephaseshiftof thecircuitof Fig.2.1.

As examples we may take the two stable filters considered in Sec.
2.6. For the simple RC-filter of Fig. 2“1 we have, on reading the required
coefficients from Eq. (1),
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The amplitude amplification and phase shift are

IY(j@) I = (1 + ti’T’)-fi, (69a)
@ = tan-’(–~7’); (69b)

these functions are plotted in Fig. 2..11.
The frequency-response function of the. simple servomechanism

described by Eq. (46) is

The amplitude amplification and phase shift are

@= – tan-l “ \w.]

()
2J (71b)

1–:
u.

these quantities are plotted as func-
tions of u in Fig. 2.12, for ~ = ~.

2.11. The Fourier Integral.—We 1
have now to consider how an arbitrary
input can be expressed as a sum or in- lY(jw)l

tegral of sinusoidal components.
The representation of a periodic h

function by a Fourier seriesl will be
assumed to be familiar to the reader.
Any function g(t) that is periodic in
time with period 2’, is of bounded vari-
ation in the interval

–T
~<ts;,

and is properly defined at points of
discontinuity can be expressed as an
infinite sum of sinusoidal terms with
frequencies that are integral mul-
tiples of the fundamental frequency

(72)

-v L.----- AL-------
(b)

F1~. 2.12.—(a) The amplitudeam-
plificationand (b) the phaseshift of a
simple servomechanism,as given by
Eqs. (71) with~ = +.

1A. Zygmund, TrigonometricalSeries,Zsubwenczi FunduszuKultury Narodowej,
Warsaw-Lwow,1935; E. T. Whittakerand G. N, Watson, Modem Analysis, Mac-
millan,New York, 1943.
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In terms of complex exponential one can write

+-
g(i) = ~ ane2”jJ@, (73a)

n-—m

where the coefficients amare given by

(73b)

When the function g(t) is not periodic but satisfies other conditions-

the convergence of (_+W”dt lg(t) I is sufficient-it is possible to represent

the function, not by a sum of terms with discrete frequencies nfl, but by ~
sum of terms with all frequencies .f:

/

+-
g(t) = df A (f)ez”JJt. (74a)

—.

This integral will often converge only in a special sense. The function
.4(~), which gives the phase and relative amplitude of the component with
frequency j, can be computed by means of the formula

\

+-
A (j) = dt g(t)e–zrjft. (74b)

—.

Equations (74) provide an extension of Eqs. (73) for the limit as
T~-. The reader is referred to standard texts’ for a complete dis-
cussion. It will suffice hereto show that the extension is plausible. It is
obvious that we can construct a function h(t) that is periodic with the
period T and is identical with g(t) in the interval (– T/2 < t< T/2).
Moreover, this can be done however large the (finite) fundamental period
T is made. For each value of 2’, Eqs. (73a) and (73tJ) hold, with h(t)
in the piace of g(t). It is plausible to assume that these equations hold
in the limit as T* m, If we set j = n/T, dj = I/T, and Tan = A(j),

then as T becomes infinite h(t) becomes g(t), and Eqs. (73a) and (73b)

become Eqs. (74a) and (74b) respectively.
For many purposes it is convenient to express the Fourier integral

relations in terms of the angular frequency u = %rj. With this change of
variable, Eq. (74a) becomes

‘(’)‘i-LD”@e’”’ (75)

] E. C. Titchmarsh, Introductwnto the Theory of the Fourier IntegralsrClarendon
Press,Oxford, 1937.
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As an alternative form, we shall write

(76a)

where

!

+-
G(jo) = di g(t.)e-~-t. (76b)

—.

Considered as a function of the real angular frequency u, G(@) will be
termed the Fourier transform of g(t).

It is clear that A(j) and G(ju) are in a sense both Fourier transforms
of g(t), since they represent the same function of frequency. They are,
however, different functions of their indicated arguments, with

A(j) = G(%jf). (77)

In this chapter we shall hereafter deal ordy with the representation G(ju),
in order to proceed conveniently from the Fourier transform to the
Laplace transform.

It should be noted that if g(t) is an even function of t, g( –t) = g(t),
t,hen

/

.
G(jo) = 2 dt g(t) Cos cut. (78a)

o

It follows that G(u) is an even real-valued function of u and that g(t) can
be written as

1 r-
g(t) = ; Jo do G(jo) COSd. (78b)

If g(t) is an odd function of t, g( – t) = –g(t), then

/
G(@) = 2.i - dt g(t) sin ut. (79a)

o

Since G(&) is then an odd function of u, one can write

/

.m
g(t) = : du G(@) sin od. (79b)

o

As an example of the Fourier integral representation, let us consider
the function

g(t) = e–”l’l, (80a)

shown in Fig. 2.13a. Then by Eq. (76b)

\

+-
G(jw) = d~ e–ald-jd

—.

(81)
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Thus

G(jr.o) = &,; (80b)

this function is’plotted in Fig. 2“13b. The Fourier integral representation
of the given functicm is, by Eq. (76a),

(82)

The validity of this representation can be proved by evaluating the
integral, for instance, by the method of residues. 1 As a brief review of

C(@)

& A+
a b

FIG.2.13.—(a)Plot of thefunctionu(t) = e-”’ll; (b) the Fouriertransformof the function
g(t).

the method of residues, this evaluation will be carried through in some
detail. It is convenient for this purpose to change the ~ariable of

4 L

a
FIG.2.14.—Pathsof integrationin the”

complexp-plane. (a) Pathof integration
( +@, j ~); (~), (c) pathsof integration
for useof methodof residues.

-.
integration from w to j~ or, more
precisely, to introduce the complex
variable

p=cl+ju, (83)

‘of which & is the imaginary part,
and to replace the integral over real
values of u by an integral over pure
imaginary values of p. The integral
of Eq. (82) then becomes

with the path of integration along the
imaginary axis in the p-plane, as

shown in Fig. 2.14. By resolving the integrand into partial fractions,
the integral in Eq. (84) can be brought into the form

I
.

a/r 1

/(

j-
du — eiwt= _ dp ~–~

)
ept.

az + COz %J -3. p+a
(85)

—. p–a

1See E. C. Titchmarsh, The Theor~ of Functional Oxford, New York, 1932.
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Itremains, therefore, toevaluate expression~of the form

/

3-
1=~.

1
2Rj -j.

dp — ~nt.
p–a

(86)

We now apply the method of residues. If t <0, the integrand
approaches zero as Ipl ~ m in the right half of the p-plane; in fact, it
can be shown that the line integral along the semicircle CEof radius ltin
the right half plane approaches zero as Rbecornes infinite. Let us then
consider the Iinc integral of this intcgrand around the closed contour (b)
of Fig. 2.14. This consists of twoparts: thcintegral along the imaginary
axis from —jRto +jRandthc integral around thesemicircle C~:

1
I(R) = Z=j

$

1
({p

“= w::+ L.)dp+’p’ ‘87”)p–a”

AS R - cc, the second integral tends to zero, and the first approaches the
integral 1 of Eq. (86). Thus

(87b)

the desired line integral can be evaluated as the limit of a contour integral.
Now the integral around the closed contour is equal to 2irj times the sum
of the residues of the integrand at all poles enclosed by the contour, taken
with a minus sign because the integration is in the clockwise sense. As
R ~ m, the contour (b) of Fig. 2.14 will come to enclose all poles in the
right half plane. If a has a positive real part the integrand has a pole in
the right half plane, and

I = – &. 27rje0t= – (’”’ [( <0, Rc(a) > O].l (88a)

If a has a negative real part, there is no such pole, and

1=0, [t <0, lie(a) < O]. (88b)

Since the a of Eq. (85) is a positive real quantity, the first term contributes
nothing to the integral, and

(89)

If t >0, the integrand of Eq. (86) approaches zero as Ipl - m in

the left half plane. By arguments similar to those above, the desired
integral is equal to the integral around the contour (c) of Fig. 2.14, in
the limit as R + co. This is in turn equal to %j times the sum of the

IThe symbol Rc(a) denotes the real part of a.
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residues in the left half plane, taken with a plus sign because the integra-
tionisin the counterclockwise sense. Thus

1=0, [t> O,h!e(a) >0], (90a)
I = e“’, [t> O, Re(a) <O]. (902))

InEq. (85) thesecond term contributes nothing totheintegral, and

\

+-
du -~ # = e–at = e–altl

~z + @z
(i > o). (91)

—.

(hcombining these results, oneverilies the truth of Eq. (82).
2s12. Response of a Stable Filter toan Arbitrary Input.-Let us con-

sider the response of a stable linear filter to an input gl(t) with Fourier
transform,. Then

\

+.
g,(t) = & _m du G@) e?w~. (92)

Since the response of the filter to an input e~”’ is the output Y(@)e’W’, it
follows from the linear property of the filter that its response to the input
g,(t) is the output

/

+.
go(t) = & _ ~ dw G,(ju) Y(ju)e’w’. (93)

It is evident that the Fourier transform of the filter output is

Go(ju) = YE,. (94)

That is, ihe Fourier transform of ihe jilter ouiput is equal to the Fourier

transform of the input multiplied by the frequency-response junction of the

jilter.

2.13. Relation between the Weighting Function and the Frequency-
response Function.-The relation between the frequency-response func-
tion of a stable filter and the weighting function has been stated in Sec.
2.9:

\
Y(ju) = “ dr e–;ti’~(r). (61)

o–

Since W(7) vanishes for , <0, we may write

/

+-
Y(jw) = dr e-jm’W(r). (95)

—.

The frequeny-response function of a stable jilter is the Fourier transform
of the weighting function. It is important to note that this theorem is
restricted to stable filtera. For unstable filters the integral in Eq. (95)
will, in general, not exist. The inverse of this relation is, of course,

(96)
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The significance of this relation and the importance of the restriction
to stable filters may be illustrated by a consideration of lumped-constant
filters, for which the frequency-response function is

y(ja) = fAn(j@)’”+ bm-1(ju)-1 + “ “ “ + bo

G(jw)” + a._l(ju)”–l + . . . + ao’
(m ~ n) (67)

For simplicity, let us assume that the complex constants

pi = (U + j(di, (14)

which are the roots of the equation

P(p) = anp” + an_lp”-l + . . . + ao, (13b)

are all distinct. Then Y(ju) can be expressed as a sum of partial fractions,

Y(j.) = co + -,U:p,+j++ ”””+,+; @7)
where the constants Ci depend on the b’s as well as on the a’s. The
constant COwill vanish unless m = n.

First, let us assume that all the p’s have negative real parts—all
normal modes of the filter are damped. Let us further assume that
m < n. Then the filter is stable, and we should be able to comrmte
W(t) as

L

‘(’) ‘WW#Ih+ ~ “ “ +*)’i”’ ’98)

To evaluate this integral it is again convenient to introduce the complex
variable

p=a+jw, (99)

of which@ is the imaginary part. The integral of Eq. (98) then becomes

‘(’) ‘M::’(+F1+“““+5%)’”“m)
with the path of integration along the imaginary axis in the p-plane,
as shown in (a) of Fig. 2.14. This integral can then be evaluated by the
method of residues.

Following the procedure outlined in Sec. 2.11, if t <0 we integrate
around the contour (b) in Fig. 2.14. Since for the stable filter none of
the poles of the integrand lie in the right half plane, it follows that

w(t) = o, t<o. (lOla)

If f >0, we integrate around the contour (c) in Fig. 2.14. Each term
Ci/ (p – pi) contributes to the integral in this case, and we obtain

W(t) = C,ep” + Czep” + . . + Cne””, f>o. (lOlb)
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Thus we have found that the weighting function is a sum of normal
modes; in addition, we have a means of determining the constants C. by
resolution of the frequency response Y(@) into partial fractions.

These results for a stable filter are in accord with our earlier ideas
about the weighting function. Now let us consider an unstable filter.
We shall see that for such a filter the frequency response is not the Fourier
transform of the weighting function; the assumption that it is will lead
us to false results. We assume, then, that some of the p’s have positive
real part and that these p’s appear in the resolution of Y(jo) into partial
fractions. Let us attempt to compute W(t) by means of Eqs. (98) and
(100). For t < Owe no longer obtain W(t) = O but

W(t) = – ~ Ciep”, (t< o), , (102a)

(- : o)

a sum including a term for each pi with positive real part. On the other
hand, when t >0, the contour of integration surrounds only poles with
negative real part, and we obtain

(102b)

(a,‘<o)

Both these results are erroneous: the weighting function must be zero
for t <0 and must include a normal mode with positive real part when
t>o.

2.14. Limitations of the Fourier Transfoxm Analysis.-The Fourier
transform techniques considered above are useful in the discussion of
filters, but their applicability is limited by the fact that the Fourier
transform is not defined for many quantities with which one may need
to deal. We have just seen that the weighting function of an unstable
filter does not have a Fourier transform. The same is true of many
important types of filter input: the unit-step function, the pure sinusoid,
the “constant-velocity function” [z(t) = tit], the increasing exponential;
for none of these functions does the integral of the absolute magnitude
converge.

In some cases it is possible to extend the discussion by the introduction
of convergence factors, which modify the functions sufficiently to cause
the Fourier transform to exist but not so much as to hinder the inter-
pretation of the results. This device is sometimes useful but may involve
mathematical difficulties in the use of double-limiting processes.

A more generally satisfactory procedure is to make use of the Laplace
transform. This is defined for functions that differ from zero only when
t >0 (that is, after some definite instant); it is defined for all prac&al
61ter inputs, for the normal responses to these inputs, and for the weight-
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ing functions of stable and unstable filters. The treatment of filters by
Laplace transform methods is closely parallel to the discussion in terms of
Fourier transforms, but its relative freedom from restrictions makes it
decidedly the more powerful method.

THE LAPLACE TRANSFORM

The following discussion of the Laplace transform and its applica-
tions is necessarily limited in scope and detail. No attempt has been
made to state theorems in their maximum generality. For a more
extended treatment the reader must be referred elsewhere. 1

2.15. Definition of the Laplace Transform.-Let g(t) be a function
defined for t z O, and let

Ig(t)l s Kc”’ (103)

for some positive constant a. Then the integral

\
F(p) = “ d g(t)e-p’ (104)

o

is absolutely convergent for all complex values of p such that the real
part of p is greater than a. Considered as a function of the complex
variable p, l’(p) is termed the Laplace transform of g(t); it maybe denoted
also by

/
S[g(t)] = mdt g(t)r@, (105)

o

the argument p being understood. If a is the greatest lower bound
of real constants for which g(t) satisfies an inequality of the form of Eq.
(103), the Laplace transform of g(t) converges absolutely in the half plane
to the right of p = a; a is called the abscissa oj absolute convergence. The
region of definition of ~[g (f)] can usually be extended by analytic con-
tinuation to include the entire p-plane, except for the points at which F(p)

is singular. In what follows, this extension of the domain of definition
will be assumed.

The Laplace transformation can be defined for certain types of func-
tions that do not satisfy Eq. (103). In what follows we shall consider
only functions that contain a finite number of delta-function singularities,
in addition to a part satisfying Eq. (103). When one of these delta
functions occurs at t = O, we shall define the Laplace transform as

/
J3[g(t)] = md g(t)e-p’.

o–
(106)

1G. Doetsch, T?worieund A nwendung&r Lap laze Transformation, Springer,
Berlin, 1937; H. S. Carslawand J. C. Jaeger,OperationalMethods in Applied Mathe-
matics, Oxford, New York, 1941; D. V. Widder, The Laplace Transform,Princeton
UniversityPress,Princeton,N. J., 1941. /
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This extension of the definition of the Laplace transform is necessary, in
view of the two-sided character of the delta function, to assure that

lim J3[g(t– [tOl)]= @g(~)]. (107)
t,+o

For pure imaginary values of p, p =,ju, the Laplace transform of a
function that is identically zero fort < Obecomes its Fourier trans-
form—if this exists. Thus the Laplace transform is, in a sense, a gen-
eralization of the Fourier transform [Eq. (76 b)] applicable when g(f)
vanishes for t < 0.

The inverse of the Laplace transformation [Eq. (104)]is

1

/

b~j=
9(0 =~j b_jm dp F(p)e”’, (108)

where the path of integration in the complex plane runs from b — j~

tob +j~, totheright of theabscissa ofabsolute con\'ergence.
Examples.—It will be ~vorth }vhilc to give a number of examples of

the Laplzce transform for future rcfcrcnce. They can be verified by
direct integration.

EXAMPLEl. —Theunit-stt’p function u([):

u(t) = o, 1 <0,
u(t) = 1, tzo. I

~

m
S[u(t – to)] = d ll(t – to)c–’”

o

[

.
— ~~ p–it =

~–l>ta
—

(0 p ‘

In particular, JWInote that

C[u(t)] = ;.

lh.4MPLE 2:

(

o, (t < o),

g(t) =

sin d, (t 20);
w

c(g) = -~
p + u~”

I

o, (t < o),

g(t) =

t“, (~~o);
~!

C(9) = ~i”

ExAMpLE 3:

(to z 0). (10!)/‘

(109C)

(llOa)

(llOb)

(llla)

(lllb)



SEC.2,16] PROPERTIES OF THE LAPLACE TRANSFORM 53

In particular, we note that for the” unit-ramp function,”

(o, ($ < o),
g(t) = (l12a)

t, (t 20);

EXAMPLE4:

J3(g) = ;. (l12b)

{

o, (t < o),
g(t) = (l13a)

peal, (t> o);

s(g) =
~!

(p – a).+l- (l13b)

EXAMPLE5.—The unit-impulse function b(t – to):

/

.
.s[a(t – to)] = d ~(t – .io)e-pL= e–@O, (to 2 o). (114)

n–--
In particular,

‘C[a(t)] = 1. (115)

2.16. Properties of the Laplace Transform. -We here note some
properties of the Laplace transform that are useful in determining the
transform of a function or the inverse of a given transform. All functions
considered will be of the restricted class defined in Sec. 2.15.

Linearity. -If gl(t) and g,(t) have the transforms &(g,) and ~(g,), then

J3(clgl+ c2g2) = cl&(gl) + c2c(g2), (116)

where c1 and CSare arbitrary constants.
Laplace Transform of a Derivative:

()s # = fro(g).

The proof is simple:

()/

dg “

‘a=o_ /
dt~e-’t= “ +P “g(t)e–’” dt g(t)e–pf

(l– (l–

(117)

= g(o–) + pc(g), (118)

from which Eq. (117) follows, since for all functions under dkcussion
g(O– ) vanishes.

Thus we see that multiplication of the Laplace transform of a function
by p corresponds to taking the derivative of the function with respect to t.
An example of this relation is provided by the unit-step function u(t) and
its derivative, the unit-impulse function ~(t).By Eq. (1 17) we must
have

J2[a(t)]= p2[?L(t)]; (1191
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by the results of the preceding section this is

l= p:.
P

Lap.lute Transform ojan Integral:

=wo’g(”l‘%(’)]

(120)

(121)

This isessentially the same as Eq. (117), with g(t) here playing the role
of dg/dt in that equation.

Division of aLaplace transform bypthus corresponds to integration
of the function with respect to t,with appropriate choice of the lower

limit of the integral. Since n-fold application of the operator ~ dt to\o–
the unit-step function gives

u )
1 ,,

dt u(t) =$, (t > o), (122)

it follows that

~“i-) -(-)

t“ 1 ‘~.—
~! P P’

(123)

the result of Example 3 of the preceding section then follows from the
linearity of the Laplace transform.

Laplace Transjorm oj e-o’ g(t) .—If g(t) has the Laplace transform
F(p), then

J3[e-’’g(t)] = F(p + a). (124)

For example, &[tnea’u(t)] is obtained by replacing p by p – a in

.qtw(t)]= $.
This istheresult stated inEq. (IIM).

Laplace Transjorm of the Convolution oj Two Functions.—Let g,(t)

and gz(t) be two functions of t that vanish for t < 0. The convolution of
these two functions is

\
h(t) = “

/

.
dr g,(T)g,(t – r) = d7 g,(t – T)g,(r).

o– o–
(125)

If gl(t), gz(t), and h(t)all possess Laplace transforms, then

S(h) = SO. (126)
For

‘(h) = L:dte-”’l:d’g(’)g,(’-r)

/

.

\

.
—— dr gl(r)e–p’ dt g2(t – r)e-p(’y). (127)

o- o–
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Changing the variable of integration in the second integral to s = t– r,
and remembering that gz(s) = O if s < 0, we have

\

.

/

.
&(h) = dr gl(~)e–P’ ds g~(s)e–~”,

o– o–
(128)

whkh is a restatement of Eq. (126).
The multiplication of two Laplace transforms thus corresponds to

formation of the convolution of their inverse functions. This is often a
convenient way to determine the inverse of a given Laplace transform
when it can be factored into two Laplace transforms with recognizable
inverses.

Limiting Values of the Laplace Transform.—Let F(p) be the Laplace
transform of g(t). When the indicated limits exist, then the following
theorems are valid.

lim pF(p) = }~m~g(t). (129)
p-o

If g(t) contains no delta-function term at t = O,

lim pi’(p) = g(O+). (130)
p+ m

If g(t) contains a term K ~(t), then

lim F(p) = K, (131)
p+ m

and
lim p[l’(p) – K] = g(O+). (132)

p+ w

The proof of these relations can be carried out along the following lines
when g(t) contains no delta functions. We note that

I
.

pF(p) = dt g(t)pe_@ = –
/

m dt g(t) ~ (e-p’).
o–

(133)
o-

Integrating by parts, we have

where dg/o!t may contain delta functions corresponding to discontinuities
in g, including a term g(O+ ) ~(t) corresponding to a discontinuityy at
t = O. In the limit as p ~ @, only this last delta function will contribute
to the integral on the left; one has

Iim pF(p) =
/

0+ di $ = g(o+). (135)
P- m o–
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Similarly, replacing c–’” in the intcgrand by its limit as p ~ O, one obtains

lim pF(p) =
\

“dtg=g(co).
p+o o–

(136)

2.17. Use of the Laplace Transform in Solution of Linear Differential
Equations.—The Laplacc transform theory offers a convenient method
for the solution of linear differential equations, such as the filter equation

&lEo
a. ~ + an-l ~m_, —+”” +a~EO

= b 1~’ + bw_, ~~’ + . . . + boE,. (2)
m dtrn dtm+

The formulation of this method is particularly simple when the initial
conditions on the solution EO correspond to starting of the system from
rest under an input El that begins at a definite time, say t = O; that is,
when it is required to find the normal response of the system to such an
input. Under such conditions, both sides of Eq. (2) represent functions
that begin to differ from zero only at t = O. Equating the Laplace
transforms of the two sides of this equation and making use of the proper-
ties of the transforms as discussed in the preceding section, we have

(amp’ + a.-lp”-’ + . . + aO)SIZlO(~)l

= (b~p’” + b~_,p”-’ + “ “ “ + bo).$[E,(t)l. (1~~)
Writing

~(p) = b~p~ + b~-,p~-l + ~ . . + b,

anp” + an_lp”–l + . . . + aO’
(13!3)

as in Eq. (67), we have

mc[llo(t)] = Y(p)s[E,(t)]. (139)

Thus it is easy to obtain tie Laplace transform of the filter output by
multiplying the Laplace transform of the input by a rational function in p
with coefficients read from the differential equation. The output itself
can then be determined by application of the inverse Laplace transforma-
tion [Eq. (108)] or by resolving the Laplace transform of the output into
parts with recognizable inverses.

As an example, let us determine the weighting function of the RC-filter
of Fig. 2“6. This can be obtained by solving Eq. (30) with E](t) = ~(t).
We have then, by Eq. (115),

J3[ll,(t)] = 1. (140)

In this case Eq. (139) becomes

(141)



SEC.217] SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS 57

Thus, for the delta-function input, the Laplace transform of the output is

11— .&[W(t)] = *1 = l–T, 1
P+~

(142)

The inverse of 1 is, of course, ~(t); the inverse of the second term follows
from Eqs. (113), with n = 1. We thus find

W(t) = o, (t < o),

W’(t) = b(t) – +, e-;, (/ ~ f)), ) (143)

in agreement with Eq. (35).
As a second example, we may derive the weighting functions given in

Eqs, (48) to (5o). These are solutions of Eq. (46), which can be rewritten,
by use of Eqs. (47); as

For a delta-function input, C(%) becomes

(146)

The denominator factors int~

resolving the term on the right into partial fractions, we obtain

[

1
.fJw(o] = 2(*2 : 1)}4 p + UJ – 4(2 – 1)~~

1—
p + M + W.(-P – 1)J61

. (147)

Double application of Eqs. (113) then gives

w(t) = o, (t < o),

W(O = 2({23 ~)k
[e-m.{c+@.cr~uM

1

(148)_e–u”rt-a. (r~l)W] (t>o).

This general result takes the forms of Eqs. (48) to (50) for ~ <1, ~ -+ 1,
and { > 1, respectively.
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THE TRANSFER FUNCTION

2.18. Definition of the Transfer Function.-The transfer junction of a
filter is defined to be the Laplace transform of its weighting function.
In this volume, transfer functions will usually be denoted by Y(p), with
distinguishing subscripts as required. We have, then,

/
Y(p) = J3[w(t)] = md W(t)e–”.

o–
(149)

The normal response of a linear filter (stable or unstable) to an input
E,(t) that is zero for t <0 can be written as

/

.
J%(t) = dr E,(t – ,) W(r). (57)

o–

It will be noted that this is the convolution of the input and the weighting
function, as defined in Eq. (125). It follows, by Eq. (126), that when the
Laplace transforms exist,

S[li!o(t)] = Y(p)s[E,(t)] : (139)

The transfer function of a jilter is the ratio of the Laplace transforms of any

normal response and the input that produces it. The use of the symbol
Y(p) in Eq. (139) and throughout the whole of the preceding development
is thus consistent with the notation for the transfer function here intro-
duced. instead of defining the transfer function for the lumped-constant
filter directly by Eq. (138), we have chosen to define it as the Laplace
transform of the weighting function, which has been taken to be the more
primitive concept in this chapter.

The transfer function may be regarded as a generalization of the fre-
quency-response function. Unlike the frequency-response function,
it is defined for unstable filters as well as stable filters. It is defined for
general complex values of the argument p, and not just for pure imaginary
values of @ (u is real valued). When the frequency-response function
exists, it can be obtained from the transfer function by replacing the argu-
ment p by ju [compare Eqs. (61) and (149)]; the values of the frequency-
response function are the values of the transfer function along the
imaginary axis in the p-plane.

In the preceding section we have seen how, for a lumped-constant
filter, Eq. (139) can be derived from the differential equation of the filter
and how it can be used, instead of the differential equation, in determin-
ing the normal response of the filter to a given input. In solving many
problems it is possible to deal exclusively with the Laplace transforms of
input and output and with transfer functions, except perhaps in the final
interpretation of the transforms in terms of functions of time. It is
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then useful to abbreviate the notation of Eq. (139) and to write simply

~O(P) = y(P)~l(P), (150)

the indication of the argument P giving sufficient warning that it is a
Laplace transform which is involved.

Filters consisting of many parts can be described by differential equa-
tions that govern the several parts or by a single differential equation
derived from these by elimination of intermediate variables. In the
same way one can describe the components of a filter by equations of the
form of Eq. (150) and can eliminate variables between these equations,
by purely algebraic manipulation, to obtain a similar equation governing
the over-all characteristics of the filter. This calculus of Laplace trans-

forms provides a formally simpler description of the systems than that in
terms of differential equations and will be much used in this book.

Avery simple example is provided by a filter that consists of two filters
in series. The first filter, with transfer function Yl(p), receives an input
E, and yields an output EM; EM then serves as input to a second filter,
with transfer function Y2(P), which gives the final output Eo. In terms
of Laplace transforms we have

EJZ(P) = Y1(P)~l(P), (151a)
Eo(P) = Yz(P)~~(P). (151b)

Eliminating EM(p), we obtain

Eo(P) = Y,(P) Yz(P)~dP). (152)

We seen then, that the over-all transfer function of the complete filter is

Y(p) = Y,(p) Y,(p): (153)

The transfer j’unction oj two filters in series ia the product of ~heiT individual
transfer function.s. By Eqs. (125) and (126) one can infer that the weight-
ing function of two filters in series is the convolution of their separate
weighting functions:

/
w(t) = “ fh w,(r) W,(t – T). (154)

()-

This result can also be derived from the relations

/

1
E~(t) = dr E,(t – 7)W,(~), (155a)

o–

,!

t
Eo(t) = d, E,,(t – ,) W,(7), (155b)

o–

which correspond to Eqs. (151a) and (15 lb), respectively.
2019.

function
Transfer Function of a Lumped-constant Filter.-The transfer
is more generally useful in the discussion of filters than is the
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frequency-response function, in part because it is defined for a wider class
of filters. For an illustration of its use weshall return tothe considera-
tion of lumped-constant filters, for which the transfer functions are
rational functions of p, with coefficients that can bereadfrom thegovem-
ing diiTerential equation:

Y(p) =
b~pm + b~–,p--l + . . . + b.

a.p’ + an_lb”–l + . - . + aO”
(138)

If m > n, the resolution of Eq. (138) into partial fractions contains
terms of the form A~–~p*–’,A”-_lp-–l,l, . . . , A ,p. The filter output
then contains terms proportional to the first and up to the (m – n – l)th
derivative of the input. In particular, W(t) contains these derivatives

of the delta-function input. Then ~~dt]W(i)l does not converge, as

can be seen by considering the functions approximating to the delta
function; the filter is unstable. We have already noted that with a
passive lumped-constant filter one cannot have m > n.

If m s n and the root pi of

F’(p) = amp” + a._ Ipn-l + . . . + aO = O (13b)

is si-fold, the general resolution of Eq. (138) into partial fractions is of
the form

cl,l’(p) = co + -—
CM cl,.,

P–P1+(P –P1)’+””’+(P– TW’
~ c,, C22 C2,,2

‘(P– P2)’+”””+(p–p2)”’‘P– P2
-1-”””.

The inverse of this is, by Eqs,

w(t)
w(t) = cd(t)

[
+ cll+:t+ ~+.

+ . . . .

(156)

(111) and (113),

= o, (t < o), \

The delta-function term appears in the weighting function only if m = n;
it represents a term in the general output that is proportional to the input.
The other terms in W(t) represent the transient response of the filter to
the impulse input, expressed as a sum of normal-mode functions.

It is evident that the weighting function will contain an undamped
normal mode and the filter will be unstable if and only if the resolution of
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Y(p) into partial fractions contains a pi with nonnegative real part. This
is not the same as saying that the filter is stable if and only if Eq. (13b)
has no such roots; it may have such roots and still be stable if the cor-
responding factor (p — pi)” in the denominator in Eq. (138) is canceled
out by a similar factor in the numerator. When this happens, one may
say that the network has an undamped natural mode but that the input
terminals are so connected to the filter that no input can excite this type
of response. This may be a very precarious type of stability, since a
small change in the filter constants—in the b’s—may make this cancella-
tion inexact and the 61ter unstable.

2.20. The Stability Criterion in Terms of the Transfer Function.-It
will be noted that p’s withnonnegative real parts will be absent from Eq.
(156) and the lumped-constant filter will be stable if and only if Y(p) has
no poles in the right half of the p-plane or on the imaginary axis. This is
a special case of a more general stability criterion: If the transfer function
Y(p) is analytic in the right half plane and is well behaved on the
imaginary axis—for instance, if the absolute value squared of dY/dp is
integrable-then the filter is stable. If at least one singular point of Y(p)
lies in the right half plane, or if at least one pole lies on the imaginary axis,
then the filter is unstable.

It will be noticed that the preceding theorem does not cover all pos-
sible situations; in particular, it does not settle the case where there are
singularities other than poles on the imaginary axis. It is certainly
adequate, however, for most practical problems; for all filters with
lumped elements the transfer function is a rational function analytic
except for poles.

The proof of this general stability criterion will be indicated briefly
If the absolute value squared of dY/dp is integrable along the imaginary
axis, then, by the Parseval theorem, LltW(t) 12 and (1 + P)\W(t)12are
integrable. It follows, by Schwartz’s inequality for integrals, that

/

.

\
dt lW(t)\ = Q dt (1 + t2)~~]W(t)l 1

0- o– (1 + t’)>+

<.
J]

mdt (1 + P)[w(t)[’
d]

“dt~”
o- 0- 1 + p’ (158)

/

.
dt [W(t) I is bounded and the filter must be stable. On the other

h&d, it is evident that for a stable filter the Laplace transform of the
weighting function is analytic and uniformly bounded in the right half
plane. The transform function can therefore have no singularities inside
the right half plane. Furthermore it could have no pole on the imaginary

1See,for instance,E. C. Titchmarsh,Introduction to the Theory of Fourier Inkgrals,
CIarendonPress,Oxford, 1937,pp. 50-51,
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axis and still remain uniformly bounded in the right half plane. This
concludes the proof of the second part of the theorem.

SYSTEMS WITH FEEDBACK

2.21. Characterization of Feedback Systems.—A mechanical or elec-
trical system with feedback is one in which the output of some part of

the system is used as an input to the system
01 at a point where this can affect its own

value. A servo system is a feedback system

FIG. 2.15.—Servoschematic.
in which the actual output k compared with
the input, which is the desired output, and the

driving element is activated by the difference of these quantities.
Figure 2“15 is a block diagram showing the essential comections of a

servo system. The output I% is fed into a mixer or comparator (in
mechanical systems, a differential) where it is subtracted from the input
I%to produce the error signal

t(t) = Ol(t) – Oo(t). (159)

This signal controls the output through a system of amplifiers, motors,
and other devices, here shown as a box. To complete the formal descrip-

tion of the system it is necessary only to specify the relation established
between e and d. by the contents of this box. lf the system is linear,
this can be specified as a transfer function Y(p); in terms of the Laplace
transforms we can write simply

(%(p) = Y(p),(p). (160)

The transfer function Y(p) will be called the jeedback transfer -function.
It is the transfer function around the entire feedback loop, from the
output of the differential (~) back to the input to the differential (00).

The over-all performance of the servo can be described by another
transfer function Yo(p), which relates the input and output of the system:

%(p) = Y,(p) eJ(p) (161)

This may be called the over-all transfer junction, or the transjer function oj
the system. This transfer function must be carefully distinguished from
the feedback transfer function, to which it is simply related. Equation
(159) implies that

6(P) = OI(P) — 80(P); (162)

elimination of c(p) from Eqs. (160) and (162) yields the very important
relation

Y(p)
‘O(p) = f- ~(~j’ (163)
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Since Eqs. (159) and (161) are defining equations for c and Y,, Eq.
(163) is valid for any feedback system for which Eq. (160) is valid. In
certain types of systems Eq. (160) will not be valid if Y(p) is interpreted
as the transfer function around the entire loop. This occurs when the
servo output is not combined directly with the input but is further filtered
in the feedback loop; the driving elements of the system are then activated~
by the difference between the input and this function of the output. For
example, a modification of the servo system of Fig. 2.15 is shown in Fig.

I

I
~

FIG.2.16,—Servowithnddcdfilterin feedbackloop.

I 2.16. A tilter has been inserted in the feedback loop to provide an input
to the differential that is not %(p) but Yz(p)&I(p). In such a system

1

!
Yl(p)[o,(p) – y,(p)%(p)] = co(p). (164)

The over-all transfer function is thus

%(P) = Y,(p)
YO(P) = ~

1 + Y1(P)Y2(P)”
(165)

On the other hand, the transfer function around the loop is

Y,(p = Y,(p) Y,(p); (166)

Yo(p) and Yz(p) are not related by 13q. (163). It will be noted that Eq.
(165) expresses the transfer i’unction of the system as a fraction in which
the denominator is 1 plus the transfer function around the loop. This
can always be done.

Such servo systems as that shown in Fig. 2.16 are not, in general,
satisfactory. If the system is to have a zero static error, it is clear that
the feedback filter must always give the same asymptotic response to a
step function; that is, }~o pY,(p) (l/p) = YZ(0) = 1 [see Eq. (129)].

Since changes in the parameters of the filter may change the value of
Y.z(0), it is not customary to filter the output before comparing it with
the input; on the other hand, such a filtering action maybe inadvertently
introduced by elasticity in the gear trains and by other factors.

A servo system may contain more than one feedback loop. F@re
2.17, for instance, show a feedback system with two loops. The
inner loop serves to modify the characteristics of the driving elements;
the whole of the contents of the dashed box of Fig. 2.17 corresponds to
the box of Fig. 2.15. In this system we have

A = c – Y2(p) e.(p), (167a)

e.(p) = Y*(p)p. (167b)
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Eliminating ~ from these equations, we obtain

O.(P) = 1 + ;$;Y2(P) C(P) = y(P)@). (168)

Thus
Y,(p)

Y(P) = 1 + y,(p) Y,(p)” (169)

The transfer function of the system is given by Eq. (163) or, more
explicitly, by

Y,(p)
(170)Ydp) = 1 + Y,(p) + Y,(P) Y2(P)”

Since a servomechanism is a lumped-constant filter with transfer
function Yo(p), its stability can be discussed by application of the general
theory of filter stability: A servomechanism will be stable if and only if
YO(p) has no poles in the right half of the p-plane or on the imaginary
axis. From Eq. (163) it is evident that Ye(p) will have a pole only where
1 + Y(p) has a zero. [A pole of Y(p) is merely a point where Ye(p)
equals 1.] Thus a servomechanism mull be stable if and only if 1 + Y(p)

has no zeros in the right half of the

WZ’e’’z$:

sally vahd only ti Y(p) M defined

Fm. 2.17.+ervo with two feedbackloops. Y(p) in this statement by the loop
transfer function Y,(p) only if

Ye(p) and Yl(p) are related by Eq. (163); in other cases one must reex-
amine the relation between these quantities. Such cases will not be con-
sidered further in this chapter.

The feedback transfer function is of basic importance in the theory of
servomechanisms—for the dkcussion of stability, for the evaluation of
errors in servo performance, and in general throughout the design pro-
cedure. We shall therefore turn to a discussion of its properties.

2.22. Feedback Transfer Function of Lumped-constant Servos.-The
feedback transfer function of a lumped-constant servo can be written as

(171)

where s is an integer, K, is a constant, and Q~(p) and Pn(p) are poly-
nomials of degree m and n respectively, the coefficients of the zero power
of p being taken as unity. The constant K, in this expression will be
called the gain; in general it is defined as

(172)
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the exponent s being so chosen as to make the limit finite and different
from zero.

The value of s has an important bearing on the properties of the sys-
tem. Eliminating % between Eqs. (161) and (162), one can express the
error in terms of the input, ,

C(P) = ~ + lY(P) e,(p). (173)

Given the form of 19,(p) and the limiting form of Y(p) as p ~ O (that is,
IC,/p’) one can determine, by application of Eq. (129), the limiting value
approached by the servo error as t s cc. For example, let us consider a
step-function input with the Laplace transform [Eq. (109c)]

e,(p) = ;. (174)

The limiting value of the error as t becomes infinite is

C(CO)=lim p 1 1
p+o 1 + Y(p) j

= lim
1

KQ
. lim L. (175)

P+O 1 + —’ —“ P+01+5
p’ P. Pa

The continued action of the servo will eventually reduce the error to
zero only ifs z 1. Ifs = O,then the limiting value of the error is

(176)

Now let us assume that s = 1, so that the static error of the system is
zero, and find the steady-state error arising when the input changes at a
uniform rate. We consider then the constant velocity input with Laplace
transform d{ = 1/p2 [Eq. (11 lb)]. The error with which this input is
followed will approach

Thus, if the
(s = 1), the

c(~) =lim p 1 1
p-o 1 + Y(p) @

= lim
1

P+O p + K, $“
.

1. —.
K,

(177)

feedback transfer function has a simple pole at the origin
system will follow a unit constant-velocity input with an

error (lag) that is the reciprocal of the gain. This gain K1 ‘is called the
vdocily-error constant,
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If thesystemis to have zero error forationstant-velocity input, the
condition to be satisfied is s Z 2; that is, the feedback transfer function
must have a second-order pole at the origin. If s = 2, the system will
show anerror for a constant acceleration input (OJ= 2/pa);

2=— .
K,

(178)

The quantity (Kz/2) is then called the acceleration-error constant.
2.23. The Feedback Transfer Locus.—The feedback transfer function

furnishes one with a complete description of the servomechanism. It
is a complex-valued analytic function of the complex variable p; as
such it is completely determined by its values along a curve. The
imaginary axis has special significance in this connection because Y(ju)e]”
is the steady-state response of the feedback loop to the pure sinusoidal
input e’”; Y(ju) can therefore be measured directly by experiment. The
plot of Y(ja) in the complex Y-plane for all real values of u is called the
feedback transfer locus; it is also referred to ~ the Nyquist diagram of the
transfer function. As we shall see, this locus furnishes us \vith a very
convenient way of determining the stability and the performance charac-
teristics of the servomechanism.

Since the net\\-orksand devices \vith which we are concerned can be
represented by differential equations with real coefficients, we have

Y*(jCd) = Y(–jai). (179)

It follo~rs that the real part of Y(joJ) is an even function and the imaginary

+’”’.=+=+”’ ‘::;:ho:::xis::

quently the transfer locus is sym-

Y-plane; in plotting this locus it is
(a) (b) (c) necessary to draw only the graph

FIG. 21S,-The approach of Yfjw) to for positive values of ~the re-
infinity for a first-orde~ pole (b) and a mainder of the locus is then ob-
second-order pole (c) as u ~ O+ (a).

tained by reflection in the real axis.
The properties of the feedback transfer function discussed in Sec.

2s2’2 are readily recognized in the transfer locus. If the static error forL
the system is zero, then the feedback transfer function must have a pole
at p = O. If the pole is of the first order, then, as shown in (b) of Fig.
2-18, Y(jco) becomes infinite along the negative imaginary axis as u + O•l-
(the + indicates that u approaches the origin from positive values as in
Fig. 2.18a). For a second-order pole at the origin (a zero steady-state
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error for a constant-velocity input), Y(@) becomes infinite along the
negative real axis as shown in Fig. 218c. In general, if the feedback
transfer function has a pole of order s at the origin, Y(j.0) approaches
infinity along the direction that makes an angle of (–7r/2)s with the
positive real axis.

The limiting form of the transfer locus as u - m can also be easily
obtained. Let b~ and an respectively be the coefficients of pm in Q~(p)
and p“ in P.(p) [Eq. (171)]; then as a ~ + ~,

(180)

In general, s + n – m > O; and Y(ju) approaches zero from a direction
that makes an angle of ( –7r/2) (s + n – m) with the positive real axis.
For example, if Q-/P. is a constant divided by a polynomial of first
degree in p, Y(ju) approaches zero along the negative real axis for s = 1
and along the positive imaginary axis for s = 2.

2.24. Relation between the Form of the Transfer Locus and the
Positions of the Zeros and Poles.—In the preceding section the feedback
transfer locus was defined as a mapping in the Y-plane of the imaginary
axis in the p-plane. It is now necessary to define this locus more care-
fully. Usually the feedback transfer function will have a pole at the
origin, and it may have other poles along the imaginary axis. As p
passes through these poles, there are discontinuities in the transfer locus;
thk locus then falls into segments corresponding to the part of the
imaginary axis between + ~ and the first such pole reached with decreas-
ing jq the part between the first and second poles, and so on. In order
to define the connection between these segments we shall now modify the
previous definition of the transfer locus.

Let us consider a path in the p-plane that

+

A p-plane
lies along the imaginary axis, except that it
shall include a small semicircular detour in
the right half plane about the singular points
on the imaginary axis, and a large semicircu- C
lar path in the right half plane, from very
large negative imaginary values to very large
positive imaginary values (see Fig. 2.19).
For sufficiently small detours about the poles B

on the imaginary axis and for a sufficiently FIG.2,19.—Closedpath in the

large semicircular connecting path, this
p-plane.

closed path will enclose all of the poles and zeros of any rational function
Y(p) inside the right half plane. We shall call the closed curve that
results from mapping any such contour onto the Y-plane the transfer locus
of Y(p).
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These-defined transfer locus can be determined experimentally. It
is evident that the locus for nonsingular frequencies can be obtained as
the steady-state response to sinusoidal inputs at these frequencies. The
mapping of the semicircles in the p-plane onto the Y-plane can be deter-
mined as follows. Near the singular frequencies the system will, in
general, overload. One can, however, determine from such tests the
order of the pole, which as we shall see is sufficient to define the transfer
locus about the detours. The same is true for the large semicircle (about
the point at infinity).

If the pole at pl is of order s, then in traversing the semicircle from
PI + ~~ to p, – jP (for sufficiently small but positive p), the curve traced
in the Y-plane by Y(p) will be essentially an arc of a circle traversed in
the counterclockwise direction through an angle of about .m. This
follows immediately from the fact that in the neighborhood of p, the
transfer function is approximately of the form

A
Y(P) = (p _ ~,). (181a)

or

Y(PI + Pej+) = AP-se-is~, (181b)

where .4 is a complex-valued constant.
Similarly, for very large values of Ip[ (the outer semicircle in the

p-plane) we have

(180)

As the large semicircle is traversed by the point p = Re@, from o = –T/2
to @ = +7r/2, Y(p) traverses a circular arc of small radius (approaching
zero with l/ZP+m–n) through an angle —(.s + n — rn)~.

We have now seen how the feedback transfer function maps the closed
curve of Fig. 2-19 into a closed curve I’ in the Y-plane. The right half
of the p-plane is thus mapped by Y(p) into the interior of r. Conse-
quently if Y.(p) is equal to – 1, for instance, for some point in the right
half plane, then the contour 1? will encircle the point ( – 1,0) in the
Y-plane. Since the servomechanism will be stable if and only if Y(p)
does not equal – 1 for any point in the right half of the p-plane, or on
the imaginary axis, it is clear that the transfer locus furnishes us with
another means of determining the stability of the servo. How this can
be done will be discussed in the following sections.

2.26. A Mapping Theorem.—We shall now prove a theorem of
analysis that is useful in the discussion of the stability of servomechanisms.

Let G(p) be a rational function of p. If the point p in t,he p-plane
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describes a closed contour C in the positive’ sense, the point G(p) in the
Gplanedescribes aclosed contour r(Fig.2”20). ljthecontour Centircles
in a positive senke Z zeros and P poles (this takes into account the multi-

plicity of zeros and poles), the corresponding contour r in the G-plane enm”rcles
the origin

N=Z– P (182)

timesin a positive sense.
We here assume that none of the zeros or poles lies on the contour in

the p-plane; a slight modification of the contour will always allow it to
satisfy this condition, since the zeros
and poles of G(p) are isolated. The
term “encircle” is defined as follows:
Consider a radial line drawn from
the point pl to a representative point
P on the closed contour C. As the
point P describes the contour C in
some sense, the radial line sweeps out

+’+’
FIG. 2.20.—Mapping of a closed

coutourin the p-planeonto the G-plane.

an angle that will be some multiple of 27r. If this Angle is 2rn, then the
contour encircles the point pl, n times. The sign of n will depend upon
the sense in which P describes C.

We shall prove the theorem in stages. Suppose first that the function
has a single root at p = p,:

G(p) = A(p – p,), (183)

where A is a constant. In polar form this becomes

G(p) = APe~*. (184)

It is clear that as the point p dcscribcs a contour C in the positive sense,
the corresponding point in the G-plane describes a contour r in a positive
sense. The number of times that r encircles the origin is precisely the
total change in @/27r which occurs when p traces C once. Thus r
encircles the origin once if C contains PI in its interior but otherwise does
not encircle the origin.

If the function has two distinct roots pl and pz, then

G(P) = A(P – P,)(P – P2). (185)

When written in polar form, this is

G(p) = ~plpze~[$’+~’), (186)

where p — p, = plei~l and p — pz = p~el~’. If the contour C encircles
no roots, the total change in (o1 + OJ is zero and r does not encircle the
origin. If the contour C encircles one or both the roots, the total change

1The interiorof thecontourisalwayson the leftas the point describesthe contour.
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in (@l -!- 42) is% or4u and r encircles the origin ina positive sense once
or twice, respectively.

If the two roots are equal, any contour enclosing one will, of course,
enclose the other, and the corresponding contour in the Gplane will
encircle the origin twice. In general, if the contour C encircles a root
of mth order, or m distinct zeros, the contour r encircles the origin m
times in a positive sense.

Now let us consider a function with a pole of first order at p = pl,

(187)

If the contour C encircles the pole p = p, in a positive sense, the contour r
in the G-plane encircles the origin once in a negative sense. This can be
generalized in exactly the same fashion as was done above with respect
to the zeros; if the contour C encircles n poles in a positive sense, then the
cent our r in the Gplane encircles the origin n times in a negative sense.

We can combine these types of function to form one that has both
zeros and poles. Suppose G(p) is a rational fraction

(188)

where Q-(p) and Pn(p) are polynomials of degree m and n respectively.
This can be written in factored form as

( ‘P1)(P– P2)”””(P– P*)
G(P) = ~ ~~ _P,)(p –-P,) . . “

(p – pm)’
(189)

where some of the roots p 1, pz, . . . , pm and some of the poles PI,

P2, . . . , Pm may be repeated. Asp describes in a positive sense a closed
contour that encircles Z zeros and P poles, the phase angle of G changes
by +% for each of the enclosed zeros and by – 27rfor each of the enclosed
poles. The total number of times that the corresponding contour in the
@plane encircles the origin is exactly Z – P. This establishes the valid-
ity of the mapping theorem.

2.26. The Nyquist Criterion.-Now let us apply the theorem of the
preceding section to the function

G(p) = 1 + Y(P) (190)

and to the closed contour in the p-plane illustrated in Fig. 219. The
map of a contour in the p-plane onto the Y-plane can be obtained by
shifting the corresponding map on the G-plane to the Ieft by one unit.
It follows that the contour C in the p-plane, described in a positive sense,
will map into a contour r in the Y-plane that encircles the point ( – 1,0)
in a positive sense N = Z — P times. The transfer locus—a curve of
this type for which C encloses all zeros and poles of 1 + Y(p) that lie
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[

inside the right half of the p-plane—will thus encircle the point (– 1,0)
a number of times that is the difference between the total number of
zeros and the total number of poles of 1 + Y(p) inside the right half of
the p-plane. This result, together with the fact that the system will be
stable only if the number of zeros is zero, can be used in the discussion of
the stability of servomechanisms.

There is a well-known theorem due to N’yquist’ that applies to feed-
back systems in which the feedback transfer function is that of a passive
network. The feedback transfer function of even a single-loop servo is
not usually of this form; the very presence of a motor introduces a pole
at the origin. It remains true, however, that single-loop servos of a
large and important class have feedback transfer functions with no poles
inw”de the right half of the p-plane. To these single-loop servos the
following theorem applies: The servo will be stable if and only if the locus

of the feedback transfer function does not pass through or encircle the point

(– 1,0) in the Y-plane.

This can be proved as follows. First of all, let us assume that the
over-all transfer function

(163)

has a pole on the imaginary axis. Then 1 + Y(p) has a zero for some
point p on the imaginary axis, and Y(p) = – 1; the feedback transfer
locus passes through the point (– 1,0). We know that in this case the
servo is unstable (Sec. 220), in agreement with the statement of the
Nyquist criterion.

Now let us assume that there is no pole of Yo(p) on the imaginary axis.
Then the servo will be stable if and only if 1 + Y(p) has no zeros in the
right half of the p-plane. Now single-loop servo systems of the class that
we are considering have no poles of Y(p) in the right half of the p-plane;
that is, P = O. The contour C does not pass through any poles or zeros
“of 1 + Y(p), since the poles are bypassed by detours and we are now con-
sidering only the case where there are no poles of YO(p) [i.e. no zeros of
1 + Y(p)] on the imaginary axis. It follows that the feedback transfer
locus will encircle the point (– 1,0) a number of times that is exactly
equal to the number of zeros of 1 + Y(p) in the right half plane. The
servo will thus be stable if and only if the number of encirclements is
zero. This concludes the proof of the criterion.

Examples.—As an application of the Nyquist criterion we shall now
consider the type of servo described by Eq. (46). The feedback transfer
function for this system is

K
‘(p) = p(Tmp + 1)’ (191)

1H. Nyquist, 1’RegenerationTheory,” Bell .’S@em Tech. Jour., 11, 126 (1932).
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where K is the gain and T- the motor time constant. A rough sketch of
the locus of the feedback transfer function is shoum in Fig. 2“21. The
full line shows the portion of the locus obtained for positive values of a;
the dotted line that obtained for negative values of w The semicircle

T-b
J .-=

; (J=O--,
1 \

\
~~ Y-plane j,
1 \‘\\”---

\_ +<0
(

ti -+-

al. o+

FIG.2.21.—Locusof the
feedback transfer function
l’(p) = K/[p(TmP+ 1)1.

about the origin corresponds to the indenta-
tion made to exclude the origin. The arrows
indicate the direction in which the locus is
traced as w goes from + m to – ~. Actually
what is drawn is the locus of Y(p)/lY; the critical
point is then (– l/K,O) instead of (– 1,0).
(The reason for drawing the locus in this way is
that it is much easier to change the position of
the critical point than to redraw the locus for
different values of the gain.) According to the
Nyquist criterion this servo system is stable,
since the feedback transfer function locus does
not encircle the point [ – (l/K), O].

Theoretically, the system \Villbe stable ho~vever large the gain. This
is not actually the case, because the feedback transfer function in Eq.
(191) only approximates that of the physical servomechanism. A closer
approximation includes the time con-
stant T. of the amplifier; then

Y(P) = 1—.
K p(Tmp + l)(~op +—~” (192)

The locus of this feedback transfer
function is shown in Fig. 2“22. For
small values of the gain K,,the critical
point [– (l/K), O] is not enclosed by
the locus and the system is stable; for
large values of the gain, the point

[– (l/K), O] is encircled twice by the
locus, and the system is unstable. It
is easy to obtain the limiting value
of K for which the system becomes un-
stable. The value of u for which the
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FIG. 2.22.—Locusof the feedback
transferfunction
[Y(P)/Kl = I/[p(l”mp + l)(T.p + l)].

locus crosses the negative real axis is easily found to be uo = l/~m~
Since Tn is much larger than T~, the magnitude of Y at this point is

(193)

For stability, then, KTa must be less than unity; that is,

(194)
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2.27. Multiloop Servo Systems.—In single-loop servo systems the
feedback transfer function has no poles inside the right half of the p-plane.
As a consequence the stability criterion has the simple form given in the
previous section. For multiloop servo systems, however, the feedback
transfer function may contain poles in the interior of the right half plane;
this can occur when one of the inner loops is unstable. When this is the
case, the more general form of the theorem in Sec. 2.24 must be applied.
It remains true that the system is stable if and only if there are no zeros
of 1 + Y(p) in the right half plane, but the number of times that the
feedback transfer locus encircles the point ( – 1,0) is equal to the number
of zeros minus the number oj poles. An independent determination of the
number of poles inside the right half of the p-plane must be made, after
which the number of zeros can be obtained by reference to the transfer
locus and use of Eq. (182).

In general, because of the form of the feedback transfer function for a
multiloop system, it is not very difficult to determine the number of
these poles. As stated in Sec. 2.21, the feedback transfer function for
multiloop systems will often be of the form

(169)

If there are three independent loops in the system, Yl(p) may itself be
of the form

Y,(p)
Y1(P) = 1 + y,(p) Y4(P)” (195)

A procedure for determining the stability of the multiloop servo system
will be made clear by considering such a three-loop system. The poles
of Ys(p) Yl(p) can be obtained by inspection, since this, in all likeli-
hood, will be a relatively simple function. The locus of Y3(P) Yl(p)
is then sketched to determine the number of times that it encircles the
point (– 1,0). From this number N and the number of poles of

Y3(P) Y4(P)

in the right half of the p-plane, the number of zeros of 1 + Ys(p) Y,(p) in
thk region can be obtained; this is the number of poles of Y1(p) inside
the right half of the p-plane. The number of poles of Yz,(p) in the right
half of the p-plane can be determined by inspection; the number of poles
of Yl(p) Y2(P) is the sum of these numbers. The locus of Yl(p) Y2(p) is
then drawn, and the number of poles of Y(p) in this region is determined
as before. Finally the locus of Y(p) is drawn, and from this locus is
deduced the number of zeros of 1 + Y(p) in the right half of the pplane.
Thus by use of a succession of Nyquist diagrams it can be determined
whether or not the system is stable.
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Examples of Multiloop Systems.—We shall first discuss a two-loop
system of the type sketched in Fig. 2“17. Let us suppose that the inner
loop consists of a tachometer plus a simple RC-filter of the type shown in
Fig. 2.6. The tachometer output is a voltage proportional to the
derivative of the servo output. The transfer function for the combina-
tion is therefore

Y,(p) = K,p
Top

Top + 1’
(196)

where K1 is the factor of proportionality y, We shall suppose that the
amplifier-plus-motor has the transfer function

K,
‘1(p) = p(Tmp + l)(Z’.P + 1)-

The feedback transfer function is
Y,(p)

Y(P) = 1 + Yl(p)y2(P)’

(197)

(169)

To determine whether or not Y(p) has any poles in the right half of the
p-plane it is necessary to examine

K, K,TOp
Y1(P)Y2(p) = (Tmp + l)(T.p + l)(Z’OP + 1)”

The transfer locus for Y,(p) Y,(p) is shown in Fig. 2.23. Since

Y,(p) Y,(p)

(198)

has no poles in the right half of the p-plane, the N-yquist criterion can be

+

Y,Y2-plane
applied to determine whether 1 + Y1Yj has
any zeros in the right half of the p-plane. It
is evident from Fig. 2.23 that the locus does

@o+ not encircle the point ( —1,0) for KIKZ ~ O;
Kl=+ca consequently 1 + Y1Yz has no zeros in the

(
right half plane, and Y(p) has no poles in this
region. It follows that the simple Nyquist
criterion can be applied in this case.

FIG.2.23.—Transferlocusof As a second example we shall consider a
Y,(p)Y,(p) = (K11c2T0F)/
[(~mP+ 1)(~.P + l)(~OP + 1)1.

servo for which the simple Nyquist criterion
is not valid. We shall again consider the sys-

tem shown in Fig. 2“17 and shall suppose that the tachometer and filter
combination has the transfer function

‘2(P)‘K1p(&)
and that the amplifier plus motor can be described by

(199)

(200)

I
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We shall further assume that To > T~. As above, the feedback transfer
function is

Y1(P) (169)Y(P) = 1 + Y,(p) Y2(P)’

where now

‘1(P)Y2(P)‘&%(TD%) (201)

The locus of Y,Y2 is sketched in Fig. 224 for positive values of w only.
This locus intersects the negative real axis at about the frequency

The magnitude of YIYJ at this frequency is

IY,Y,(UO)I = *KIK,.

Thus the inner loop is stable if ~KX, <1.
loop is unstable and, indeed, an application of

(202)

(203)

If ~KXZ >1, the inner
the theorem of Sec. 2.25

shows that in this case there are two zeros of the function 1 + Yl Yz in
the right half of the p-plane.

l@=o -
Y-plane \ ~- =,

\

@ A$+iiij
kIG.224.-Transfer 10CUBof FIO.2.25.—Feedbacktrans-

Y,(p) Y2(P) = ferlocus.
[K,K,/(z’mP + 1)1

[TOP/(T’OP+ 1)1’.

We shall now assume that the gain is set so that the inner loop is
unstable. A sketch of the feedback transfer locus is shown in Fig. 2“25;
the origin of the p-plane has been excluded from the right half of the
pplane by the usual detour. If the gain KI is such as to make the point
(– 1,0) be at A, then N = O. Since Y(p) has two poles in the right half
of the p-plane, O = Z – 2, or Z = 2; the system is unstable. If the
simple Nyquist criterion were applied to this system, it would lead to the
false conclusion that the system is stable. If the gain KI is such as to
make the point ( – 1,0) fall at B, then N = – 2. In this case – 2 = Z – 2
and Z = O; the system is stable. In appl ying the simple N yquist criterion
one would have obtained a double encirclement of the critical point in a
negative direction; the result would then have been ambiguous.



CHAPTER 3

SERVO ELEMENTS

BY C. W. MILLER

3.1. Introduction. -In this chapter there will be presented some
examples of the physical devices that are common components in elec-
tronic servo loops. Its purpose is to describe a few actual circuits and
mechanisms that may assist in the physical understanding of the problems
discussed in following chapters—the design and mathematical considera-
tion of the entire servo loop. This chapter can, however, serve only as a
cursory introduction to the field of servo components.

FIG.3.1.—Simpleservoloop.

Since the types of devices commonly utilized in the more .eomplex
servo loops are the same as in relatively simple servo loops, it is sufficiently
informative to consider the possible elements in such a simple loop as
that presented in Fig. 3.1. In this figure the common mechanical dif-
ferential symbol has been employed to indicate any device that has an
output proportional to the difference of two inputs. Thus,

6=01—00. (1)

The various “boxes” employed in the loop have transfer characteristics
defined by

(2)

In genetal, attention will be focused on the frequency dependence of
these transfer characteristics rather than on amplification or gain.
Because of this, no space will be devoted, for example, to the quite
involved problem of the design of vacuum-tube amplifiers. Special
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attention will be paid, however, to error-measuring systems and their
inaccuracies. This emphasis is based on the fact that such elements are
not included in the servo loop and therefore no amount of care in the
design of the loop will decrease the error resulting from their inadequacies.

The equation relating the input quantity 8, and the output quantity
OOin Fig. 3.1 is

L&= Y]*(P) ‘23(p) yin(P)
el 1 + Y12(P) Y23(P) Y,l(p) + Y23(P) Y,,(p) ‘

The relation between error e and the output quantity is

00 = Yu(P) Y23(P) Y31(P).—
e 1 + Y23(P) Y32(P)

(3)

(4)

It is to be noted that the loop in the example involves two devices of
the differential type. Differential 1 of Fig. 3.1 is an error-measuring
system; such systems will receive extended discussion in this chapter.
Amplifiers may be employed in either or both of the boxes Y,Z(p) and
Y23(p). In one of these boxes there may be also a device for changing
the nature of the signal carrier; such elements will be mentioned in this
chapter. Also, special transfer characteristics may be desired for operat-
ing on the error c; suitable networks for this will be presented. Equaliz-
ing or stabilizing feedback is employed by the path through Yaz(p), and
a section of this chapter will present examples of the devices commonly
used to obtain a desired transfer characteristic Ysz(p). The remaining
box, the transfer characteristic of which is given as Yil(p), is often a gear
train and as such has (if it is properly designed) no interesting frequency
dependence. Some discussion, however, will be included on the problem
of gear trains.

There is, of course, no clear-cut rule for separating the components of a
servo loop. Indeed, even with the same servo loop it is sometimes helpful
to make different separations that depend upon the particular interest at
the time. In this chapter, the attempt will be made to separate transfer
functions according to physical pieces of equipment. To maintain con-
sistency with Fig. 3“1, primes will be used if additional equipment is
involved.

3.2. Error-measuring Systems.—Necessary components of any closed-
loop system are those devices which measure the deviation between the
actual output and the desired output.

It is imbortant that this difference, or error, be presented in the f orm
most suitable for the other components in the control system. Thus
the location of equipment, as well as the choice of the physical type of
error signal and its transmission, is important. For example, a mechani-
cal differential is rarely used as a device to obtain the difference between
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the actual output and the desired output, because it is often impractical
to realize these two quantities as physically adjacent shaft rotations.
Also, one may or may not desire the error as a shaft rotation, the choice
depending upon the amplifying system to be used and its required
placement.

Certainly one must also choose an error-measuring system that has an
inherent accuracy greater than that required of the over-all loop. Often
both static accuracy and dynamic accuracy of the system must be
examined. Many error-measuring devices produce “noise” of such a
nature that the component frequencies are proportional to the rate of
change of the input and output quantities. The response of the loop to
this noise roust be considered.

In addition to such noise, error-measuring systems utilbing a-c carrier
voltages commonly have in the final output not only a voltage propor-
tional to the error, with a fixed phase shift from the excitation voltage,
but also a voltage that is not a function of error and is 90° out of phase
with the so-called error voltage. Harmonics of both voltages are usually
also present. The phase shift of the error voltage, if reasonably constant
for the class of device, is not a serious problem but must be considered in
the design of the other components. The quadrature voltage and the
harmonic voltages are often very troublesome because they tend to over-
load amplifiers and to increase the heating of motors. Special design,
nevertheless, can eliminate this problem (see Sec. 3-12).

F&dly, the components of the error-measuring system must be
mechanically and electrically suitable for the application; that is, the
error-measuring system must fulfill its function for a sufficient length of
time under velocities and accelerations of the variables being transmitted
and with the exposure, impacts, temperatures, etc., encountered in the
anticipated use of the equipment.

Because of the ease of transmission of signals and the resulting freedom
in placement of equipment, electrical devices have had wide applications
as error-measuring devices. A few types will be discussed in the follow-
ing sections.

3.3. Synchros.-This discussion, elementary in nature, will be
restricted to a type of synchro that is in common use in Army, Navy,
and some nonmilitary equipment.

If the axis of a coil carrying an alternating current makes an angle 9
with the axis of a second concentric coil, the induced emf in the second
coil will be K cos e, where K is a constant dependent upon the frequency
and the magnitude of the current in the primary coil, the structure of the
coils, and the characteristics of the magnetic circuit. If two additional
secondary coils are added with their axes 120° and 240° from the axis of
the first secondary coil (see Fig. 3.2), the emf’s will be
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Eo,, = Kcosf3,

Em, = KcoS(8– 1200),

I

(5)
Em, = Kcos(O –2400),

where the subscripts indicate the points between which the voltage is
measured and their order gives the sense of the measurement. The
terminal voltages will be

E,,.s, = K W COS (8 + 300),
Es,s, = K V% COS (d + 1500),

1

(6)
E~,,, = K @ COS (0 + 2700).

In Fig. 3.2thelabeling is that for Navy synchros, and the circuit as
drawn is physically equivalent to a Navy synchro viewed at the end of
the synchro from which the rotor shaft extends. It is standard practice
in the Navy, however, to consider counter- S2
clockwise rotation positive rather than clock-

A

~._.-
/“ -.

wise, as in Fig. 3.2. / ‘\\
e

Various modifications of the construction of

3

\\
\\

a synchro exist to suit different functional uses. R2~ ‘.
1

In this section, only synchro transmitters, ~ -” i
o

I
synchro repeatem, and synchro control trans- }, /’
formers will be mentioned. In these units, the \\ /
three stator coils are located on a laminated ‘.. /’---- S1
magnetic frame that surrounds and supports the S3
rotor. Synchro transmitters and repeaters Fm, 3.2.—Schematicdi.-
have a salient pole or “dumbbell” type rotor, gramof a synchro.

but a control transformer has a cylindrical rotor. A mechanical damper
is built into synchro repeaters to decrease oscillatory response. For a
more detailed discussion of these types of synchros (and for discussion of
other types), one or more of the various references should be consulted. 1

Table 3.1 gives a brief summary of some of the characteristics of a few
of the Army and Navy synchros.

3.4. Data System of Synchro Transmitter and Repeater.—Such a
device as that described in Sec. 3.3, so constructed that the angle o can
be changed at will by turning the rotor (the primary), is known as a

I oSynchroa and Their Application)” Bell Telephone Laboratories, Systems
DevelopmentDepartment,Report No. X-63646, Iesue2, New York, Mar. 19, 1945;
“Specificationsfor SynchroTransmissionUnitsand Systems,” 0.S. No. 671, Rev. D,
Bureauof Ordnance,Navy Department,Washington,Feb. 12, 1944; “Specifications
for Units, A. C. Synchronousfor Data Transmission,” FXS-348 (Rev. 7) Tentative
Specification,Frankford Arsenal, Mar. 9, 1943; “United States Na~ Synchrcm,
Deec~iptionand Operation,” Ordnance Pamphlet No. 1303, A Joint Bureau of
Ordnanceand Bureauof ShipsPublication,Navy Department.Washington,Dec. 15,
1.944.
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synchro transmitter (or generator) when it is used in transmitting elec -
trically the value of the angle t?. By use of a synchro repeater (or motor),
the angle .9may be reproduced at a remote position as a shaft rotation.
A synchro repeater is similar in structure to a synchro transmitter,
except for the addition of the damper previously mentioned. Because
of the difference in use, the rotor of the repeater is free to rotate’ with
little friction and low-inertia loads, whereas the transmitter rotor is
mechanically constrairied to the value of d that is to be transmitted. A
repeater is connected to a transmitter as indicated in Fig. 3.3.

TABLE3,1.—SYNCHROUNITSFOR115-VOLT.60-CYCLEOPERATION

Synchro Weight
lb

l—
5G Navy generator. 5
6G hTavygenerator. 8
7G Navy generator. 18
IF Navy motor. 2
5F Navy motor. 5
lCT Navy control

transformer. 2
3CT Navy control

transformer. 3
5CT Navy control

transformer. 5
IV Armytransmitter 4.8
I-4 Armytransmitter 11.8
X Army repeater. 1.3
V Army repeater. 4.8
II-6 Army repeater. 10.3
XXV Army trans-

former. . . . . . . . . . 1.3
XV Army trans-

former. . . . . . . . . . 4.8

katoI

90
90
90
90
90

90

90

90
105
105
105
105
105

104

104

btol

volts

115
115
115
115
115

55

55

55
115
115
115
115
115

60

58

Exci-
,atior
cul--
rent,
amp

0.6
1.3
3,0
0,3
0.6

0 .04!

0.04:
0.55
1.0
0.12
0.55
0.55

.,.

Jnit torquf
gradient,

z-in./degre

0.4
1.2
3.4
0.06
0.4

.,.

. . . . . . . .
0.48
1.0

.020-0.02
0.48
0.53

Unit stati(
accuracy,
degrees

Avg

0.2
0.2
0.2
0.5
0.2

0.2

0.1

0.1
0.2!
0.2!
1.0
0.2!
0.2!

Ma>

0,6
0.6
0.6
1.5
0.6

0.6

0.3

0.3
0.5
0.5
2.0
0.5
0.5

0.9

0.9
—

Rotor
Iertia,
b in.z

0.31
0.94
2.4
0.026
0.31

0.026

0.31
.,

If the rotor of the repeater has the same angular relationship to its
stator coils as the rotor of the transmitter has to its stator coils, no cur-
rent will flow in the stator leads. This is a minimal-energy position.
If the angles are different, currents flow in the stator leads and equal
torques are exerted upon both the transmitter and the repeater rotors in
such a sense as to reduce the misalignment and thus to approach a mini-
mal-energy position. Since the transmitter rotor is constrained, the
repeater rotor turns until it assumes an angular position 0, to within the
errors caused by construction difficulties and friction. It will be sho~vn
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(Sec. 3.6) that the restoring torque when a synchro unit is connected to
a similar unit acting as a transmitter is very nearly 57.3 Tu sin (d’ – O),
where T. is the unit torque given in Table 3.1. There is a position of
zero torque at 180° misalignment, but it is unstable.

FIG.
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3.3.—Synchrotransmitterconnectedto synchrorepeater.

In some cases where it is necessary to reproduce a variable quantity
remotely as a rotation, the primary system can easily stand any torque
that might be reflected upon it. It might seem that a simple transmitter-
repeater system would have wide use in such cases. As is seen, however,
from Table 3.1, small loading would cause very appreciable errors even
for the larger synchros. If the error ever exceeds 180°, the synchro
repeater will seek a null 360° from the proper angle. In fact, the syn-
chro repeater may lock to a zero torque position after any number of
multiples of 360° measured at its own shaft. This makes it difficult to
obtain greater torques by gearing down to the load, though some schemes
have been devised.

As a further disadvantage, the transfer characteristic of a transmitter-
repeater system exhibits a high resonant peak (an amplification of 2 to 8,
depending on the manufacturer) at a frequency between 4 and 8 cps.
Any increase in the inertia at the synchro shaft results in a still poorer
transfer characteristic.

For these reasons, simple transmitter-repeater data systems are
generally used to drive only light dials. In such a use, a coarse dial
(so-called “low-speed” dial) is driven by one transmitter-repeater com-
bination in which shaft values are such that the 360° ambiguity is of no
consequence or such that the ambiguity will be avoided by limits on the
variable. A fine dial (so-called “high-speed” dial) for accurate inter-
polation between graduations on the low-speed dial is driven by a second
transmitter-repeater combination. Siice it is used only for interpola-
tion, the 360° amb;guity causes no concern.
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By adding torque-amplifying equipment that is activated by the rota-
tion of the synchro-repeater shaft, many types of servos can be devised.
They range from simple types in which the rotor activates a switch that
directly controls an electric motor, to more complex systems in which,
for instance, the synchro repeater controls a valve in a hydraulic amplifier.

3.6. Synchro Transmitter with Control Transformer as Error-meas-
uring System.— Wit hou t torque amplification, a synchro-transmitter -

52 S2
,--

‘S? /
R1 Z IX,z

t’

3

A-c \
supply

R2\ I \
\ \

\
\ / 53‘\

Cpntrol
Transmltier transformer

I?m. 3.4.—Synd)rotransmitterconnectedto a synrhrocontroltransformer.

repeater combination is not, in general, s~tisf act my as a follow-up
because of the low torque and poor response characteristic. As a result
of the extensive development of the science of electronics and of design
aclvanccs in electric motors and generators, torque amplification is often
obtained by electrical means. I?or this, the natural input is a voltage
rather than a shaft rotation. To meet this need, synchro control trans-
formers have been developed. Figure 3-I shows how a control trans-
formers connected to a transmitter.

With neglect of source impedance, the voltages given inEq. (tl)will
be impressed across corresponding stator leads of the control transformer.
These voltages will produce proportional fluxes, which ~villadd vectorially
to give a resultant flux having the same angular position in respect to the
control-transformer stator coils as the transmitter rotor has to its stator
coils. If therotorof thecontrol transformer issetat right angles to this
flux, novoltage isobserved across terminals R1-R2. Iftheangle of rota-
tion 0’ of the control-transformer rotor is less than O,an a-c voltage appears
across R 1-R2 with a slight phase lead (about 10°) with respect to the line
voltage. If t?’is greater than 0, an a-c voltage is again observed across Rl -
R2, but with an additional 180° phase shift. In fact, the voltage appearing
across R1-R2 maybe expressed as E~l~z = Em sin (O — o’). Since Em is
usually about 57 volts, there is, for small errors, about a volt per degree of
error measured at the synchro shaft. In add~tion, a quadrature voltage
(with harmonics), usually less than 0.2 volt in magnitude, is present even
at O’ = O. Note that there is a “false zero” 180° from the proper .mo.

By use of a phase-sensitive combination of amplifier and motor, a
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torque can be obtained that can be used to make O’ just equal to (?. This
is accomplished by connecting the input of the amplifier to terminals
R1-R2 of the control transformer and controlling a motor, geared to the
control-transformer rotor, with the output of the amplifier. If the equiP-
ment to be positioned is also geared to the motor, a simple servomechanism
is thus obtained. Examination of the phase of the voltage for angles
very near the “false zero” mentioned above shows that it is an unstable
position. The servo will quickly synchronize to the proper zero.

It is to be noted that here, as for the synchro-transmitter-repeater
data system, the error in following must not exceed 180° at the synchro
shaft, or this servo system will seek a null 360° or a multiple of 360°
(measured at the synchro shaft) from the proper angle. Therefore, the
same requirements on shaft values must be imposed here as were men-
tioned for the single synchro-transmitter-repeater combination.

Difficulties in fabrication introduce inaccuracies in synchros as shown
in Table 3.1. These inaccuracies area serious limitation on the use of the
previously described system using a single transmitter and control trans-
former. Such an error-measuring system is often called a “ single-speed”
synchro data system.

The effect of inaccuracies of synchros on the precision of transmission
of a quantity can be greatly decreased by operating the synchro at a
smaller range of the variable per revolution of the synchro. For example,
if the servo problem is to reproduce accurately the train angle of a direc-
tor, a ‘‘ l-speed” synchro system will be needed. For this there are
needed a synchro transmitter geared one-t~one to the director and, of
course, a synchro control transformer geared one-to-one to the remote
equipment that is to follow the director. Since 360° rotation of the direc-
tor rotates the synchro through 300°, a 0.5° inaccuracy of the synchro
system would give 0.5° inaccuracy in reproduction of the angle. This
l-speed synchro has no stable ambiguous zeros. It can now be paral-
leled with a “high-speed” synchro system, so geared, for example, that
10° of director rotation turns this second transmitter 360°. A similarly
geared control transformer is added to the remote equipment. The
synchros are now aligned or electrically zeroed (see previous references in
Sec. 3.3 for technique) by so clamping their frames that when the error
between director position and the position of the remote equipment is
zero, both synchro systems produce zero-error voltage. With such a
pair of high-speed synchros the inherent inaccuracy in reproducing the
train angle has been reduced by a factor of 36; for example, it is 0.013°
if an inaccuracy of 0.5° exists at the synchro shaft. Unfortunately, the
high-speed (which can in this case be called 36-speed) system has 35 false
zeros, or lock-in points.

The l-speed system gives approximate information of the total train
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angle; the 36-speed system gives very accurate indication of the angle,
but only if it is synchronized at the proper zero.

A switching system is needed to put the l-speed system in control
until the reproduced train angle is approximately correct and then throw
the control to the 36-speed synchro system. Such a circuit is often called
a “synchronizing” circuit. An example of a type of such a circuit is
shown in Fig. 3.5.

The action of the circuit is quite simple. The first tube VI acts as an
amplifier. The second tube is biased below cutoff. As the l-speed error

,=-,
Tn R? nf Wspeed synchro / \

I \
I

speed synchro
o

\ T
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‘Tl
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+ 300V lowwattage
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:’lpf
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+6sN7
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I

51K
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1,o/uf

5.6K
* o

To R1 of 36-speed synchro
and R1 of l-speed synchro

FIG.3.5.—Synchroni.zingrircuitfor dual-speedsynchrosystem.

, To servo-
amplifier

voltage increases, there is no effect on the plate current of V2 until the
error has reached a critical value related to the bias on V2, at which point
the average plate current of V2 increases rapidly. This critical value of
error is chosen either by changing the gain of the first stage or by changing
the bias on V2 so that the l-speed system assumes control before there is
any danger of locking-in on one of the adjacent false zeros of the 36-speed
system.

Since the error should be low while the servo follows motions of the
director, this circuit will not need to function except when the follow-up
system is first turned on or when there is a severe transient in the motion
of the director.

There are some considerations that tend to limit the extent to which
the shaft value of the high-speed synchro control transformer is decreased
in an effort to improve the accuracy of a servo and, incidentally, also to
increase the gain of the transmission system in volts per unit of C..xsr.
One limitation is that the high-speed synchros should not be driven at too

I

I

I

I

I

1
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high a rate at the maximum velocity of the transmitted variable. For
example, Navy units listed in Table 3“1 should not be driven faster than
300 rpm, though there are special units, similar in other respects, that
can be driven up to 1200 rpm. Inertia considerations should not be
overlooked. Often the synchros, even if at 36-speed, reflect to the motor
shaft inertia that is not negligible, especially for small motors. Syn-
chronizing difficulties may arise at low shaft values of the high-speed
synchro. Because the region of high-speed control is extremely narrow,
a comparatively short time is required for the servo to pass completely
through this region. A large number of overshoots or even sustained
oscillation may result. Finally, little is gained by lowering the shaft
value of the high-speed synchro if backlash in the synchro gearing is
causing more error than that inherent in the synchros or, in general, if
the other components in the loop do not merit increased accuracy from
the data transmission.

The above director follow-up system will serve to illustrate a problem
encountered in dual-speed synchro systems. If the follow-up mechanism
is turned off and the director is rotated through an angle that is close to
an integral multiple of 180°, the 36-speed system will be at or near a
stable zero (see Fig. 3.6a). Furthermore, the system is at or near the
false zero of the l-speed synchros, and there will be insufficient signal to
activate the relay of the synchronizing circuit. Thus the follow-up,
if turned on, would remain 180° from the proper angle until some condi-
tion arose that caused sufficient error to throw the relay. Such an
ambiguous zero exists in any dual-speed data system at those values of
the transmitted variable which require an even number of rotations of
the high-speed synchro and an integral number of half revolutions of the
low-speed synchro.

The problem of this ambiguous zero can be solved by putting in series
with the error voltage from the 1-speed synchro cent rol transformer a
voltage ESO that has a magnitude in the range

(7)

where cc is the critical error angle that will throw the synchronizing
relay, ~HSis the shaft value of the high-speed synchro system, and E-, is

the maximum error voltage that the synchro can deliver. The voltage

Eso is often called an “ antistick-off” voltage.
The purpose of this voltage E.. is to displace the false zero of the

l-speed system so that there is enough voltage from the l-speed system
to throw the synchronizing relay at what was the ambiguous zero. Of
course, the l-speed false zero must not be displaced so much that it
approaches the next stable null of the high-speed system.
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The displacement of the false zero can better be understood if one
follows through the procedure of adding the voltage step by step. Figure
3.6a is a plot of the magnitude of the voltages observed from both the
1- and the 36-speed synchro systems as the dh-ector is rotated through
360° of train angle with the follow-up turned off. In this figure, when the

1 Ill
3;0” & 1’o”

I
90” @+ 170”180”190” 270°

(Distorted angular scale)

(a)

Ill I Ill
350”0° 10° 90° ~+ 170”180°190” 2;0”

(Distorted angular scale )
(b)

FIG. 3.6.—Addingstick-offvoltageto duai-speedsynchrosystem.

plot of the magnitude of the a-c error voltage passes below the baseline,
it indicates a phase shift of 180°. For clarity, only the voltages in the
region of 0° (the angle at which the remote equipment has been left)
and in the region of 180° (the region of the ambiguous zero that we wish
to eliminate) are plotted. This is merely a partial plot of

E, = E.,,, sin 0, (&’a)

and

Eii = Em.. sin (360), (8b)

where ,?l~is the error voltage from the l-speed system, E~ is the error
voltage from the 36-speed system, and @is the angle through which the
director has been turned.

If a voltage I& from the same a-c source that is used to excite the
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synchro generators is added to the l-speed error voltage, the voltages
become

E; = E= sin O + ESO, (9a)

E~ = E~., sin (360). (9b)

This will displace upward the curve in Fig. 3.6a labeled “ l-speed error
voltage. ”

Now it is still necessary that when the db-ector is at the same angle as
the remote equipment, the error voltage from the 1- and 36-speed systems
be zero and of the same phase for small errors. Therefore, we realign
the low-speed control transformer to obtain these conditions, and the
result is shown in Fig. 3.6b. The equations for the voltages are now

E~ = E.= sin (I9— 1#1)+ Eso, (lOa)
E. = E- sin (36I9). (lOb)

Since at 0 = O, E; = O, we have

E,o = E-. sin ~. (11)

The new position of the false zero Ofof the l-speed system is given by
the solution of

o = Em. sin (0, – +) + Em,. sin O,
or

1

(12)
0, = 180 + 2@.

Thus the false zero has been shifted through an angle 2q$. It is desired
that the false zero be shifted by an amount greater than ~c, the critical
error angle associated with the throwing of the synchronizing relay.
Then the follow-up will be unable to settle in the stable zero at 180°
of the 36-speed system because the synchronizing relay will be energized.
Also, the false zero must be shifted by an amount that differs by EC
from an integral multiple of the shaft value S=s of the high-speed synchro.
For practical reasons, it is well to limit the shift to an amount less than
the shaft value of the high-speed synchro. Therefore,

SHS– CC>! M>6C. (13)

Siice #1is fairly small, we may write

s.s–ec>2; Em > cc (values in degrees). (14)
.

For a 1- and 36-speed system, such as our example, S=. = 10° and
w is usually about 2°. Thus a reasonable choice of ESO is about 3 volts,
because E- = 57 volts.

We may generalize the above formula to include systems in which the
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Iow-speed synchro is not at l-speed and obtain

(15)

in which SW is the shaft value of the low-speed synchro and S~s, SB, and
CCare all expressed in the same units of the variable.

3.6. Coercion in Parallel Synchro Systems.—So far in this discussion
there has been no mention of the effects of the internal impedance of
synchro units. As more follow-up systems composed of synchro repeaters
or combinations of synchro repeaters and transformers are added in

~, t ti. .“. r ,

Transmitter I%eay
size “a” !. ,,

4
E I
t 1 ~

FIG.3.7.-—Simplifiedsynchrocircuitfor torquecalculations.

parallel to a single synchro transmitter, impedance effects become more
pronounced.

Simple relationships, predicting these effects with satisfactory
accuracy for small angular errors between transmitter and follow-up,
can be obtained from elementary reasoning. These relationships are
supported both by experiment and by precise analysis. I

We are interested in a synchro system that is transmitting a fixed
angle 0. For generality, a transmitter of size a and a repeater of size b

(such as, for instance, a Navy 7G driving a Navy 5F) are chosen. The
Y-connected stator system is replaced by a stator system composed of

1?. M. Linvilleand J. S. Woodward, “ Sslsyn Instrumentsfor PositionSystems,”
Illec. E’rw.,New York, 53,953 (1934).
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one coil with its axis at an angle 8 (thus parallel tothe transmitter rotor)
andasecond coil with itsaxisat an angled + 90°. This is an equivalent
circuit for computing torque, provided appropriate circuit values are
used. By applying a small torque to the rotor of the repeater, a small
angular error A is introduced into the system. The configuration is
drawn in Fig. 3.7.

Examination of Fig. 3“7 shows that the current il will be, to lowest-
order terms, proportional to 1 — cos A = Az/2. Thus both il and its
derivative in respect to A are negligibly small, and the torque will arise
predominate y from the currents ig and is. If one ignores loop 1, the
equations for L and ia are

juME sin A
‘2 = Z,b(Z,. + Z.b) + w’M~ sinz A’

(16a)

E
is = (16b)

Z,b +
w2M2 sin2 A’

Z,* + Z,b

where M is the mutual inductance, at A = 90°, between the repeater
rotor and the repeater stator coil carrying the current iz.

The energy of the simplified circuit is

U = ~(La + Lb)ijiz + M Sin Ai.& + ~L,t,isis, (17)

where La and Lb are the inductive coefficients of the stator windings of
the synchros size a and b respectively and L,b is the inductive coefficient of
the rotor of the size b synchro.

The torque is proportional to the rate of change of thk energy with
the angle A. If it is assumed that M = <&f+b and that the resistance
of the windings is small compared with the reactance, one obtains

T=K
E; sin A

Oz(La + Lb)’
(18)

in which E’ is the secondary voltage for A = 90° with no loadlng and K
is constant.

We note that the torque obtained when a synchro unit is used with a
similar unit is, for units size a and b,

Ts=KE~= (T.)- sin A,

E: sin”A =
Tb = K ~2Lb (T”)b SiXI A.

I

(19)

The symbol T. is unit torque in ounce-inch per radian and is 180/u times
the value listed in Table 3.1. With substitution of these expressions, Eq.
(18) becomes

(20a)
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where
~ ~ (~u)b

~“
(20b)

If, now, we drive n repeaters of size b, each following with the same
error (as they well may, because of similar friction loading), the term Lb

in Eq. (18) is reduced by a factor I/n. The torque is equally distributed
at then shafts, so that at each repeater shaft the torque is

j“=z( Tti)b sin A
n+R

(21)

With similar reasoning, the torque at each repeater shaft can be com-
puted when different sizes of repeaters are connected to a single transmit-
ter. The decrease in the torque gradient as more repeaters are connected
to a transmitter will result in greater error, because the friction load
at each repeater remains constant. For conservative estimates, one may
assume that three-quarters of the error for a given repeater arises from
friction and proceed on that assumption to compute the increased error
as loading decreases the torque gradient.

21= _~1 Zlb

E COS (9-240”) ~ ~0~~0-120.~EC05(e-A-240”)

Z3= , z*~
FIG.3.8.—Simplifiedsynchrocircuitfor terminal-voltagecalculations.

dlwazZ,. .Z. +T C092(O—240”),
,.

It is often desired to connect
that is already carrying a load of

z,, = Z, + ‘~ COS2(0 - A),
r

Z?b=zb+
~2Jfb2~0~2(0 _ A _ 120°)

Z.1,
“2Jfb2

‘* = ‘b + z,*— COS2(0 —A – 2400).

a control transformer to a transmitter
one or more repeaters. Therefore it is

worth investigating the accuracy of such as ystem. This involves obtain-
ing expressions for the stator voltage of a transmitter under load. We
shall again use only simple approximations. Figure 38 is the circuit of a
transmitter (size a) connected to a motor (size b) from which, by Theve-
nin’s theorem, the rotor circuits have been removed. The mesh equa-
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tions are

E w’%[COS(8 + 30°) – COS(8 – A + 300)]
= il(zl. + Zlb) — i2(z2a + 22*),

1

,

E fi[COS (6 + 150°) – COS(d – A + 1500)]
(22)

= il(Z1. + Zlb) — ~3(Z3. + z3b),
E @i[COS (O + 270°) – COS(I9– A + 2700)]

= i2(Z2a + Zzb) – i3(zti + z3b).

The meaning of the impedance terms is indicated in Fig. 3.8.
In manipulation of Eqs. (22), we will need to examine the general

factor

z 1 1
Z.. ;Z.b =

[ ( )1

=—=C.
.zb 1+

U2~f; COS2(O — A) Z,b
Z:b 1+;

z a
1 + 2.[1 + ((.#M: COS2@/z:a) (2,./2.)]

(23)

The factor C is a constant for a given configuration of synchros because
.%/.% = Z,a/Za, and because (u’.kf~ COS2~) /Z~o = – E~+/E~, ~vhere
E,$ is appropriate stator voltage for the general angle 1#1and E. is the rotor
voltage. Multiplying each side of Eqs. (22) by Eq. (23) and recalling
that A is a small angle, we obtain

GE @ A cos (I9+ 120°) = ilzl~ – izZ’.,
C’E M A cos (I9+ 60°) = ilZ1. – i3Z3~,

)

(24)
G’E & A cos 0 = i,Z2a – i3Za0.

These expressions are the internal voltage drops in the transmitter.
Therefore, the apparent stator voltages are

E @i[COS (o + 30°) – AC COS(e + 1200)]
= E & COS (d + 30° – CA),

E @COS (8 + 150°) – AC COS (6 + 600)]
– E W COS (8 + 150° – CA), (25)—

E ~[COS (0 + 270°) – AC COS8]
= E W COS (0 + 270° – CA).

Comparing these apparent voltages with Eq. (6), we note that because
of loading, the stator voltages for the system that should be transmitting
the angle 0 are voltages which would be associated with the angle 6 – CA.
Therefore, any servo employing control transformers in this system will
have an additional error of – CA”. With reasoning identical with that
presented in obtaining Eq. (20), it can be shown that
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It should be emphasized that in a complex system of synchros fed
from a single generator, there are both “steady-state” errors due to
loading and interaction errors during any transitory response. Since
synchro repeaters are fairly unstable devices, the transmitter that is
chosen must be so large that the repeater oscillations are not excessively
reflected in the control-transformer signal.

3.7. Rotatable Transformers.-A rotatable transformer resembles a
synchro in that it has a wound armature that can be rotated relative to a
stator system. The stator system, however, is composed of a single
winding rather than three distributed in space, The device is, in fact, a
simple two-winding transformer so constructed that one winding can be
rotated in respect to the other winding. As an element for simple
transmission of data, it has rather restricted use. It possesses only one
major advantage over a three-stator winding synchro-it requires one

less lead. Occasionally, for instance in transmitting data from a gyro
supported in a gimbal system, the reduction of leads is important. If,
for some such reason, it is decided to use a follow-up system employing
rotatable transformers, one transformer is appropriately mounted on,
say, the gimbal system of the gyro so that the angular rotation of the
rotor with respect to the stator is the desired datum. This datum could
well be the true elevation angle.

For thermal reasons, it is preferable to excite the st,ator winding of
such a transforrqer rather than its rotor. The voltage .??,from the semmd-
ary (rotor) winding at no load \villbe, to a close approximation,

(27)
~P

where the subscript p refers to the primary, s to the secondary, and e
is the angle between the axis of the tuw coils. In terms of the angular
variable f? to be transmitted, the expression for the secondary voltage is

(28)

where K is an alignment parameter.
An identical rotatable transformer is mounted on the remote equip-

ment that is to reproduce the angle ~. It is so aligned that its voltage is
identical with that expressed in 13q. (28). The units are then connected
as suggested by the equivalent circuit presented in Fig. 3.9. The series
connection of the primaries will be mentioned later.

The error voltage is given by

~ = (~,)m~[cos (~ + K) – COS (~ + K + A)]
= (Es)~,x A sin (@ + K),

with the assumption of a small value of A.

(29)
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It is evident that the gain (volts per degree error) is not constant for
this er~or-measuring system but varies with the transmitted variable as
sin (~ + K). Therefore, it can be used only in transmitting a variable
that is limited to some range such that P has a variation of less than 180°.

FIG,3.9.—Errorsystemusingrotatabletransformers,

Furthermore, it is important to adjust K to minimize the gain variation. I
This establishes the appropriate value of K as

K = 90°- ~+, (30)

where & and fl~ are the upper and lower limits of D. The associated
percentage change of gain is

( )/%–PL ~oo.AC= ]–COS-
2

(31)

The permissible change of gain for a servo \villnot be discussed in this
section. The analysis for investigation of the effects of change of gain is
usually not difficult; a greater problcm is often that of locating and deter-
mining all of the possible gain variations. A gain change of more than
20 per cent in the error-measuring system is often undesirable. This
would limit the range of P to about 75° in the above equation.

A practical difficulty is indicated by Eq. (29). If the a-c voltages
from the secondaries differ in time phase by a dcgmcs, the subtraction is
imperfect; a quadrature voltage, \vith a small phase difference a and a

(E.]~,,

(

i3r. – /3”
small amplitude a —57 -- sin @ — ~

)
volts, is present in addition

to the true error voltage. For cxamplcj if (36).,., is 20 volts and a is

1In someeasesit m:k.ylx, preferredto ch<mwz v:~lucrrfK influcmrxxlby an impor-
l:mt regionof O:ts well :1sthe tot:t! r:ingrof t,ltrvlll~le(,f p.
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2°, the quadrature voltage is about 0.4 volt at the extreme of d suggested
above; this is a voltage of greater magnitude than the error voltage for an
error of 10. This quadrature voltage can be diminished by exciting the
primaries in series, as has been done in Fig. 39. Often this is a good
solution. The fact that frequently the units are necessarily small in size
because of mechanical limitations of the application, tends to set a
requirement of lower primary voltage; also, the series circuit helps to
assure that the magnitude of E, will be identical for both units.

O-J e(t.

&E(line) ~
~.

FIG.3,10.—Computationalerror-transmissionsystem.

Often a rotatable transformer is present in an error-measuring system
as, a computational device. As a simple example, suppose that it is
desired to solve continuously with the aid of a servo the following explicit
equation for x(t):

sin ~(t)
z(t) = -y—

Cos e(t)’
(32a)

where 7 is a constant, d(t) is without limit, and O(f) has limits that restrict
z(t) to finite values. For ease of solution, the equation can be rearranged
as

cos 6’(t)z(t) – ~ sin @(t) = O. (32b)

The sine and cosine terms can be obtained from rotatable transfor-
mers. The circuit is that of Fig. 3.10.
The error voltage across RA is

V. = K cos d(t) Az, (33)

where K is a dimensional design parameter and AZ is the error in x. The
gain is K cos 8(t). The limits of d(t) determine whether or not it may be
necessary to remove this gain variation. One simple way is indicated in
Fig. 3“10, in which the resistor R, is a potentiometer or attenuator in
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series with a fixed resistor. The potentiometer is so wound that the
resistance measured from the arm to the lower data line is

sec{Na(t) + [e(~)lcni.}

“sec {N[a(t)]mx +[O(t)]m,n)”

In this expression [a(t)]- is the total useful rotation of the potentiometer
and N indicates the proper gearing, defined by

[8(t)]_ – [o(t)]m,. = N[a(t)]m= (34)

The resistor from the lower terminal of the potentiometer to the data

3.8. Potentiometer Error-measuring Systems.—In some special appli-
cations it is desirable to use a d-c signal carrier. The inputs may exist
“naturally” as direct current, as in the problem of controlling or record-
ing the output of a d-c generator, or an input may have been brought

1
4
I
I

fQ*
I
1

1
I iL----- -— ---- ------- --- -----

FIQ.3.1I.—Data system for multipleadditiveinputs.

deliberate y to a d-c level, so that smoothing of the data can be accom-
plished with greater facility. In some such cases, it may be advantageous
to utilize potentiometers as elements in the data system; since accuracy
and life are of prime importance, these are invariably of the wire-wound
type. If a slide-wire type is used, the data are continuous, but it is
difficult to obtain reasonable values of over-all resistance. For this
reason the more common type of potentiometer in which a contact arm
makes turn-to-turn contact is in wide use.

An error-measuring system utilizing potentiometers might be of the
form of Fig. 3.11, which has been generalized to indicate the possibility
of more than one input quantity. It will be assumed that the inputs are
to have equal weighting. Some or all the input voltages might well be
obtained from potentiometers.
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The output of the net, with the servo off, is

The following relations may be obtained by design:

The output voltage of the net E. is, of course, the error voltage and is
expressible as Gc, where G is the voltage gain of the net. Ii’

(37)

then Eq. (35) reduces to

E. = G,, (38a)

where
C=e,, +e,z+. ..+el. —00. (38b)

The gain G of the net is
R.

The net shown in Fig. 3.11 is only a simple example of what may be
used. Multiplication and division of functions of variables can also be
achieved; in fact, nets can be designed that, by the aid of a servo, obtain
continuous solutions to quite complex equations.

Adding networks of the form presented above is often useful in accom-
plishing the function of Differential 2 of Fig. 3.1. In such a case, the
feedback quantity from the output of Box 32 is one input quantity to the
network, the output of Box 12 is the second input quantity, and the out-
put of the network feeds into Box 23.

In the type of potentiometer in which the contact arm makes turn-to-
turn contact, the data are discontinuous. The nature and position of
these discontinuities are of interest both in accuracy considerations and in
understanding the “ noise” that such a potentiometer system adds to
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the true data. Such discontinuities are of the order of Es/T, where ES

is the voltage across the potentiometer and T is the total number of turns
on the potentiometer card. Thus they are small, but the development of

accurate servo-controlled potentiometer winding machines has advanced
to the stage where it is of value to examine even such small errors.

We shall examine these discontinuities for a potentiometer that has
been wound perfectly with T identical turns. A physically equivalent
circuit is presented in Fig. 3.12. The effective width of the contact arm
is Kd — b + d/c, where d is the dktance between centers of the wires
along the contact surface, b is the width of the effective contact surface

P
~b-

d-l
2=0

. . .

123

E&EEI Z-(z)mx

Q9..a ‘“ R.Rs ““”d
n-2 n-l n n+K n+K+l n+K+2 N-2 N- I N

& Es
K~ 1

-Zc>l

FIG. 3,12.—Equivalentcircuitfor a potentiometer.

of a single wire, K is an integer equal to or greater than 1, and c is a
number greater than 1. For a contact-arm motion of d/c, K turns will
he short-circuited; for a contact-arm motion of [1 – (1/c)ld, K – 1 turns
will be short-circuited. In each of these regions, the voltage observed at
the contact arm will remain constant. Actually, since this cycle may be
used to determine K, d, and 1/c, the following derivation is valid for any
shape of contact arm or wire surface. If we consider such a cycle in the
region of the nth contact surface, we have

(40)

where xl and X2are the extreme values of x for which the K turns between
the nth and then + K contact surfaces are short-circuited and m and z,
are the extreme values of z for which the K – 1 turns between the n + 1
and the n + K contact surfaces are short-circuited. & seen from Fig.
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3.12, the assumption has been made that the potentiometer is

[ ()1
(K–1)+; d

shorter than its actual physical length, and half of this correction is sub-
tracted from each end. This correction is needed to minimize the errors.
Intuitively, one realizes that it arises from the short-circuiting action of
the contact arm.

The inherent potentiometer error due to resolution will be defined as

(41a)

Obviously, the extreme errors occur at x,, x2, x,, and/or x,. At the
extremes of the region of short-circuiting K turns, Eq. (41a) becomes

n—1 X(1,2)
‘( ’’2)= T–K– -

T–K+l–:
(41b)

At the extremes of the regions of short-circuiting K – 1 turns, Eq. (41a)
becomes

(41C)

If we ignore terms that are always of the order of T–2 and assume
T>> K and l/c, we obtain from Eqs. (41b) and (41c):

1
“=m

1
“=m

‘@T-:)+,_,],
c

( )]2
n2— C

T
– 1,

(12

)

__l--~&
“=w c CT

Examination of Eqs. (42) shows that

(dN--n = – (62).,
(~2)N-m= – (dn,
(e3)w+ = – (c,).,
(,,)N_n = – (,3).. I

(42)

(43)
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If we define A as equal to (l/c – ~), it is also true that

(6,)+* = – (+A

I (44)

(C2)+A= – (63)-A

Because of Eqs. (43) and (44), it&of interest to examine the errors for
only O < n < N/2 and 1 < c ~ 2. Figure 3.13 shows the errors given
by Eqs. (42) for some values of n and l/c. It is to be noted that the
potentiometer, if perfectly aligned, has apparent resolution of at least

J//’/
,/

/’

J/’

/“
/

FIG.3.13.—Potentionmterrwolutionanderrors.

l/2T and, for c = 2, consistent resolution at the center of the poten-
tiometer of l/4T.

Often it is impractical to avoid using the potentiometer in the region
Ofx=o. This is especially true when a function capable of positive
and negative values is being converted into an electrical voltage by means
of a tapped potentiometer. There is a region of zero voltage % the tap
that is [Kd + (d/c)] units wide. This represents a separation of

()(K–l)d+ :

between the intercept on the z-axis of the best voltage slope for negative z
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and the intercept cm the x-axis of the best voltage slope for positive z.
This, if the error is split, makes the voltage always too low on either side
of the tap, and an additional constant error of magnitude

[
K – 1 + (l/c)

2T 1

is present. Obviously, in such tapped potentiometers K must be kept
small.

The broad zero-voltage region may be avoided by “floating” the
potentiometer, that is, not grounding the zero potential point. This,

‘-’’->-\
L. --—-. ---1--

‘--’’:S-’--
FIG. 3.14.—Diff erentiation and integration by error-measuring elements.

however, permits the coordinate of the zero potential to drift if, because
of loading, +Es is not identical with – E. or if thermal differences cause
nonuniform changes of the resistance in the potentiometer.

It can be seen that the noise arising from the finite resolution of the
potentiometer will have a fundamental frequency dependent upon spac-
ing of the wires, the portion of the potentiometer in use, the contact arm
parameter c, and the velocity of the contact arm. The amplitude
of the noise will be dependent on the first three of these parameters.
Because of this noise, it is generally unwise to attempt to utilize error-
derivative ‘nets in high-gain servos using such error-measuring systems,
for the afnplifier or motor may overload or overheat as the result of the
high gain for such noise.

Since only discrete voltages may be obtained from such poten-
tiometers, high-gain servos may display a tendency to chatter with a very
small amplitude in seeking a voltage value that is not obtainable. With
a higher degree of stability in the loop, the tendency usually disappears.
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Computational error-measuring elements are not restricted to those
which perform the algebraic manipulations of multiplication, division,
addition, and subtraction. There are also elements that can be used to
perform the operations of integration and differentiation. To accomplish
these operations, any device can be used that has an output proportional
to the time rate of change of the input. Such a device will be called
here a “tachometer.” If the input exists as a shaft rotation, a simple
tachometer is a small d-c generator. Usually such a tachometer has a

permanent-magnet field, but there is no reason why the field cannot be
supplied by an external electrical source; the output voltage will then
be the product of some function and the speed of the shaft of the tachom-
eter. Indeed, one might thus obtain the second derivative of the motion
of a shaft, although accuracy greater than a few per cent would be difficult
to obtain.

Simple examples of circuits using electrical tachometers and poten-
tiometers are presented in Fig. 3.14. In Fig. 3. 14u, the error voltage is

00
v, = K,pel – ES ~m) (45a)

and, for the steady state,

‘0=[% O’mab=c@
(45b)

In Fig. 3“14b, the error voltage is

e,

“ = ‘“ (O,)m=r– “peo’ (46a)

whence

(46b)

In the above equations, K, is, of course, the voltage-speed constant
of the tachometer. For a certain permanent-magnet tachometer, 1which
has been used in many equipments, K. = 35.50/1800 volts per rpm
+ 10 per cent, with 10.5 volt depending on direction of rotation. The
linearity of this tachometer is 0.5 per cent. The tachometer has a large
number of commutator segments (18) to reduce noise.

3.9. Null Devices. -There exist error-measuring systems that,
although often not, employing elements materially clifferent from those
described above, are unique in their application and do deserve separate
classification. The y will be called null devices, because they contribute
no error that is a function of the magnitude of the transmitted variable.

An example will serve as a definition. Here the problem is to posi-
tion a shaft with high torque to the same angle as a shaft on which only

IType B4.1,Electric Indicator Co,, Stamford, Corm. /’-
~,.. ,
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a slight load maybe imposed. If the shafts can be so placed as to have a
common axis, the low-torque shaft can carry the rotor of a rotatable
transformer and the high-torque shaft the stator. If the unit is properly
aligned, there will be zero output voltage at zero error; and if error exists,
the phase of the output voltage will indicate the sense of the error. Since
the null position is used, no error will be contributed by the rotatable
transformer. It is important that the error-voltage output be fairly
linear with error, but this is a problem of servo-loop gain and not of
positional accuracy.

It is apparent that many types of null device are possible. One
shaft may, for instance, carry one set of the plates of a condenser, and
the other shaft the other set of plates for the condenser. If, then, this
condenser is one arm of a bridge circuit excited by alternating current,
proper error signals can be obtained from the output of the bridge. On
the other hand, coupling between the two shafts may be by a narrow light
beam. The low-torque shaft may carry a light source or a mirror to
reflect a beam of light from a source on the follow-up shaft. The fol-
low-up shaft then carries a prism \vhich splits the received light beam
and sends it to two photoelectric tubes. Zero error, of course, should
exist when the outputs of the two photoelectric t,ubes are equal. Both
of the examples in this paragraph, howe~er, are subject to possible errors
arising from variations in several elements; for example, variations in
the other arms of the bridge in the first case or differences in the charac-
teristics in photoelectric tubes in the second. On the other hand, such
systems impose truly negligible loads on the low-torque shaft. The
designer must weigh such considerations for each particular application.

In some problems, the displacement to be followed exists as a linear
motion. Many of the devices used in following rotational displace-
ment are then applicable with obvious modifications.

One device, a so-called “E-transformer,” has been widely utilized,
especially in following linear motions. A sketch is presented in Fig.
3.15a. The E section is carried by the follow-up, while the bar section is
carried by the displacement to be followed. Motions are in the plane of
the paper and across the figure as indicated by zo and xl. Terminals
1 to 2 are excited from the appropriate a-c source. l’here is one position
of the bar for which zero voltage (ideally) is observed across terminals
3 to 4. This is the position in \vhich the bar gives such coupling that
equal and opposite emf’s are induced in the secondary. Practically,
there will be harmonic and quadrature voltages left at the null position.
For a displacement of the bar to the left of that zero position, a voltage
of phase o appears across the secondary terminals 3 to 4; and for a dk-
placement to the right, a voltage of phase @ + 180° appears across the
secondary. This voltage, then, may be used as an error voltage, and it is
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not difficult to obtain at least approximate proportionality between error
and voltage for small errors. One must be certain, however, that varia-
tions in coupling arising from causes other than the difference between
z, and m, such as mechanical looseness, do not occur, because such
variations impair the accuracy of the device.

There is an important extension of the idea of an E-transformer that
is useful in follo}ving an object that moves in two coordinates. Such
a problem is encountered when a radar director is to be stabilized by
reference to a gyro axis that is kept pointed at the target. The device
consists of two single-coordinate E-transformers at right angles to each
other, ~vith a common ccntcr, or primary pole. This assembly is moved

N’!’

(A) (b)
l:IG.3 15.—E-transformrrb,

by the follo\\-up. The input motion, from a gyro in our example, moves
a dome, shown dotted in the plan vie~r of Fig. 3. 15b. The separate error
voltages for the two servo systems involved, train and elevation, are
available from the two secondary systems.

3.10. Motors and Power Amplifiers. -Most d-c servo motors, used
with controlled armature voltage and fixed-field excitation, have torque-
speed characteristics that, to a very good approximation, may be defined
by either of the sets of conventional coefficients. If one starts with the
assumption that the torque M is linear with the armature current and that
the current is a function of motor speed Q and applied voltage E-, one
has
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or one may directly assume M = f( il~, E~), and then

‘=--~~)..[~)Em+(~)”nL=fmmEmEfmfm’48
In the above equations Em and i~ are the voltage applied to the motor
armature and the current flowing through the armature. The coefficients
defined by Eqs. (47) and (48) have descriptive names: K, is the torque-
current constant; K, is the back-emf constant; Km is the speed-voltage
constant; and f- is the internal-damping coefficient. It is seen that
Km = K;l. Strictly, Eq. (48) assumes that there is no time lag between

FIG.3.16.—D-cmotorcharacteristics.

i~ and Em, Figure 3.16 illustrates the constants for a hypothetical d-c
servo motor. Except at high values of i~ where saturation effects may
appear, existing d-c servo motors have characteristics that are, for prac-
tical purposes, similarly linear.

Two-phase low-inertia motors have been developed that are very
convenient for low-wattage control applications. For many of these
a-c motors the conventional coefficients are far from constant over the
whole range of excitation and speed. More accurate analysis of the
motors, however, does not yield a simple relation for M = f ( Q~,E~).

For this reason it is common practice to use the coefficients defined in
Eqs. (47) and (48). Fortunately, they are often fairly constant for low
speeds and voltages. Figure 3.17 shows how the coefficients vary for one
two-phase motor. For this same motor K,/Z~ is reasonably constant
over a wide range of E and ~.. It is seen that for speeds less than one-
fourth of maximum speed, f~ and Km are fairly constant. Thus, for

I
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applications where accurate performance is not required at the higher
speeds, one may analyze the loop using low-speed evaluations of the
constants. It is advisable, however, to investigate the stability of the
loop at intermediate and high speeds, because different values of the motor
time constant and the loop gain will be encountered.

In many cases it is possible to employ gain devices or amplifiers that
are nearly independent of the frequency over the region of frequencies

~n,lf= 4 in.oz

\
Jm,Em=Iio VOItS

\

/

400~

/’4,
‘f_, Em= ‘Ovolts

7
fm,Em=40volts

~o
)0 2000 3000 4000

IIm in rpm

FIG.3.17.—Characteristics of two-phase a-c motor, Diehl FPE49-2. Sixty cycle, 110 volts
on fixed phase, n-watt maximum output rating.

that is of interest in the closed servo loop. For example, most vacuum-
tube amplifiers can be represented as having a transfer characteristic

G,,
Y12(P) = ~p + ~ (49)

to a satisfactory degree of exactness. Since the attainment of an appropri-
ate value of Glz is the primary concern in amplifier design, the equivalent

time constant 2’ is often somewhat accidental. Fortunately, it is usually
smaU. The wise designer, however, will experimentally determine
Yl,(p) to reassure himself concerning the small magnitude of 1’ and to
obtain its value. Similar statements hold for any vacuum-tube ampli-
fication that might exist in Box 23 or Box 32.

The final, or power, stage of amplifying equipment may employ any
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of several elements depending upon the magnitude of power required and
the designer’s preferences. For applications utilizing very small motors
(less than +T hp) saturable reactors or electronic tubes, either the gaseous
or vacuum type, are in common use. Power vibrators, thyratrons, or
rotary magnetic amplifiers are often employed for controlling larger
motors.

Since the rotary magnetic amplifier (amplidyne) has received wide
application as a power stage driving a d-c mtitoi-, it may be of value to

=X’
c

Rotary magnetic amplifler D-c motor
FIG. 3.1S.—l{otary magnetic amplifier and d-c motor,

obtain an expression for the transfer characteristic of such a combina-
tion. The equivalent circuit is shovm in Fig, 3. 1S. The axis of the
rotary amplifier established by the direction of the film from the excita-
tion current ij is commonly called the direct axis. Quantities associated
\vith this axis will be characterized by the subscript d, and those associ-
ated with the axis at right angles to this direction (the quadrature axis)
will have a subscript q. In this primary direct-axis field, ~, is a wound
rotor driven by an auxiliary motor at a speed S. It is apparent that

(50)

in which KI is a constant describing the magnetic circuit. Because of
the rotation of the rotor, an emf is developed between the brushes b
with a magnitude

The constant Kz is determined
machine. The quadrature-axis
field +, that may be augmented

by the material and structure of the
current iq creates a quadrature-axis
by the coil. Q of impedance R, + Lqp.

I
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The quadrature field causes an emf to be developed between brushes a.
An expression for this emf can be derived from Eqs. (50) and (51),

G.ef
ed = SK8iq =

(1 + Tfp)(l + !l’,p)”

S2K,K,KS

I

(52)
G. E

R~(Ra + R,]

The load current in the armature circuit would produce a direct-axis
flux that would oppose the exciting flux. Thus the machine would have
very poor regulation. To eliminate this difficulty, compensating coils C
are present to cancel out the flux in the direct axis due to load current.

Since the emf eais applied to the motor-armature circuit, the relation
may be written

ed = i~R(Tap + 1) + K.L, (53a)

in which

R = R. + R. + R- = total armature circuit resistance, (53b)

(53C)

The torque resulting from the motor-armature current i~ will be con-
sumed in accelerating the inertia Jm of the motor rotor, the inertia JO of
the gear train which is reflected to the motor, and the inertia of the load
.JLreduced to motor speed; it also will be dissipated in overcoming any
viscous friction fg Q in the gearing and bearings. Thus the torque

equation is

in which N is the gearing ratio to the load. With .J’ as the total effective
inertia at the motor shaft, Eq. (54) maybe rewritten as

K,
~ (ed

‘KeQ’”) ‘wp+l)(T@+l)Q~

Since J’/f@ >> T., this equation is usually approximated as

(55a)

(55b)

Usually j, << (K, Kt)/R; then, using Eq. (51), the final transfer function
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for the power stage and motor is, since L = pe~,

00 KmG.

– = p(Tm.p + l)(!f’,p + l)(!rfp -t 1)’ef

[SEC.341

(56)

Suppose that a simple servo is constructed using an electronic ampli-
fier (with gain G, and lag 2’) in Box 12, a motor-amplidyne combination
in Box 23, and no equalizing-feedback path., If an error-measurings ys-
tem is employed with a voltage gain of G, volts per unit of error and Box
31 is a simple gear train of reduction N, Eq. (2) becomes

$= K.

e p(z’mp + 1)(1’,p + l)(T,p + l)(Tp + 1’

~ ~ G,G,G.K.

1

(57)
.

N“

3.11. Modulators.—It is sometimes desirable to convert a d-c signal
to an a-c signal that has a determinate phase relative to an existing a-c
voltage. For example, this is desired when a twe-phase a-c servomot or
is used in a loop that has an error-measuring system utilizing d-c voltages,
Because of the difficulties of d-c amplification, it is often preferred to make
this transition before any d-c amplification and to postpone amplifica-
tion until the signal is in a-c form. Thus it is common that little or no
extraneous noise or false error signal can be tolerated. This often rules
out various schemes of modulation employing vacuum tubes in favor of
mechanical modulation, such as is obtained with a vibrator.

One form of a synchronous vibrator employs a flat reed, or leaf, fixed
at one end and with the other end free and carrying an iron slug. Encircl-
ing this free end is a fixed coil, excited from the alternating current to
which the vibrator is to be synchronized. The coil creates an oscillating
magnetic field with its vector lying along the length of the reed; as a
result the face of the slug at the tip of the reed has an alternating magnetic
polarity. Just above this end of the reed arc the poles of a permanent
magnet, so placed that the face of the slug is subjected to a fixed field
perpendicular, to the flat of the reed. Thus the reed is subjected to an
alternating force and will oscillate with a fundamental frequency equal
to the fundamental frequency of the current flo\ring in the exciting coil.
If the reed is mechanically resonant at a frequency near the exciting fre-
quency, large amplitude is obtained with little expenditure of exciting
power. This resonance frequency, ho\vever, must not be too near the
exciting frequency or a small change of exciting frequency will produce a
large change in the phase of the oscillation of the reed. One commercial
designl has made the compromise that a vibrator for 60-cycle use employs

1Synchronousconverter No. 75829-1, Brown Instrument(~o., Philadelphia,Pa.
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a reecl resonant at about 80 cps. Thk gives about a 12° lag between the
reed motion and the exciting voltage; the latter may, of course, be shifted
in phase by a fixed amount if so desired. In servos using two-phase
motors, it is often convenient to obtain the required pha~e shift for the
controlled phase in this fashion. The same vibrator, to be excited from
6.3 volts, has a coil impedance of about 120 ohms, almost purely resistive.
Because of the harmonic content in the exciting voltage, it is preferable to

,,, .+

T

~z Eo(t)

“’iiill:?~
b

,+ ~b
(3J a

-g

k

Eoif] ~

“= g

a
Fm. 3. 19.—Vibrators as modulators, (a) Three possible circuits; (b) generalized output.

obtain the phase shift by a series inductance rather than by using a
series capacitance.

The ~eed carries electrical contacts and acts as the pole of a double-
throw single-pole switch with a noise level less than 2 ~v. For a certain
fraction of the cycle, the pole may short-circuit both fixed contacts. I

Figure 3.19a presents three possible circuits employing synchronous
vibrators as modulators. A generalized output, for which it is assumed
that the input voltages do not vary significantly during a modulation
period, is given in Fig. 3. 19b. It may be expressed as

‘(’)‘WY “)+SE2
.

+ : (E1 + E,)

2 [ 1
~+ cos s ~ (2WL– 1) sin [tio(2m – l)t]

m-l

+ : (2E, – E, + II,)

z

‘1
~n sin (smn) cos (2wont), (58)

n=l
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where the driving voltage has been assumed to be V sin (d + L?), ~ is

equal to the lag observed in the vibrator reed, and s is the fraction
of the cycle for which the pole and the two contacts are shunted to each
other.

For Circuit 1 in Fig. 3.19a, Ez = ES = O, and the output can be
expressed, from Eq. (58), as

j(t)=~R,y~2(1–s)+E~R1yR,

{[1-(91 sin~~++[’-rwsin’u”’+ ““” }

–E:R, &2 (s7r Cos Zwt + . . ~ ) (59)

if s is considered to be a small quantity. The harmonic terms will cause
some heating and overloading; they are small, however, and are usually
so attenuated by the amplifier that these effects are not serious.

If the input to the vibrator is E sin mt, then, when only the first two
terms of Eq. (59) are considered, the output is

j(t) = :+2
[+)l~lysyn~’

+ Cos (u, – ?n)t - Cos (Qlo+ ?n)t]. (60)

In such a case the sole objective is usually to obtain the sideband terms of
frequency CM– m and a, + m. In many cases the presence of the
additional (sin mt)-term in the output causes no apparent difficulty. In
feedback loops, however, it has been observed that a circuit similar to
Circuit 2 in Fig. 3“19 permits higher gain. Such a circuit has only the
(sin rwd)-terms in its output, so that no term similar to the first in Eq.
(60) is produced.

Circuit 3 is of interest because it combines the operations of obtain-
ing the difference of two voltages and of modulating that difference.
Often 2* is so chosen that it is very large compared with RI and RS. If
22 is complex, care must be taken to maintain the gain at the carrier
frequency.

The output of Circuit 3 may be expressed in terms of servo error.
If RI = Ra, Z~ = w, E. = K@,, and – E~ = K%, its output reduces to

j(’)=K[’@+o+e4s+)l
+’%l’-(alsinuo’ “ “ “ ~ ’61)

When modulation is performed at a low signal level, care has been
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taken toavoid coupling by stray capacitance tea-c voltage leads. For
example, in Circuit 1 there is stray capacitance Cm between a voltage
source Em sin (cd + +) and the leaf contact and ungrounded contact.
Since this stray capacitance will be quite small, for usual circ~its the
contribution to Eo(t) from this coupling is

+$%]
CnE. COS(d + 4)

for the half of the modulation cycle that Eo is not zero. For simplicity,
assume thats is zero and that the voltage driving the reed is sin (wd + ~),
where, as before, @ is the phase lag of the reed. Then the effect on Eo of
the stray coupling is, in fundamental frequency components,

It is seen that, in general, both an in-phase component and a quadra-
ture component have been added by the stray coupling. If the voltage
driving the reed has been shifted approximately 90° to obtain phase shift
for a two-phase servomotor, the stray coupling causes little or no servo
error from “standoff” in the voltage E. A quadrature component, how-
ever, will exist. If the voltage driving the reed has not been materially
shifted in phase, the quadrature component is small but there is a‘ (stand-
off” error equal to that which would cause a change in E of amount

AE = ; uOR,CSE%. (63)

For example, if C. = 2 X 10-8 ~f, R, = 1 megohm, wj = 377,
“En = 6.3 volts, then AE is about 6 mv.

3.12. Phase-sensitive Detectors.-It is often necessary to change
from an a-c error voltage to a d-c error voltage. For instance, if a syrl-
chro error-measuring system is used with a servo loop in which the power-
output stage is an amplidyne, it is clearly desirable to have a circuit that
will have a d-c output with the sign depending on the phase of the a-c
error voltage and with the magnitude proportional to the magnitude of
the a-c error voltage. Such a device is called a phase-sensitive detector.
There are many variations in design; one possible circuit is presented in
Fig. 3“20.

In Fig. 3.20, it is seen that the voltage applied to the full-wave rectif y-
ing diode D1 is V1 = V, + V, — Vol and the voltage applied to the other
diode Dxis V,= V,-V. – VO,. The voltage V, is often called the
“reference voltage. ” If it is assumed that
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v, = v, Cos (d + e), (64a)
v, = v, Cosd, (64b)

then

VI = v’(V, + V, cos 8)2 + (Vt sin 0)2 cos (d + 1#11)– VOI, (65a)

V, = V(V. – V, cos 0)2 + (V, sin 0)’ cos (cot – &) – VO,, (65b)

If @is small, Eqs. (65) reduce to

VI = (Vr + v, Cos 19)Cos cd – v“,, (66a)
V2 = (Vr – v, Cos e) cm tit – v“,. (66bj

It will be noted that the gain is not very sensitive to the phase angle 0.
For frequencies of the order of u, the load impedances across which

VO, and VOZare developed are kept large compared with the internal

FIG. 3.20.—Phase-sensicive detector.
.

impedance of the diodes and transformers. This avoids the effects of
nonsimilarity in these internal impedances and in the loads themselves
and helps to realize the full voltage gain GI of transformer 2’1. A high
load impedance requires a high value of R, and a low value of C,. To
decrease time delay, the product R, L’, is kept small, and poor filtering
results (10 per cent ripple is usually tolerated). Fortunately, if o is small,
the ripple due to the reference voltage tends to cancel in the circuit given
here; relatively little ripple is present in that output when the error is
small. In connection with ripple it is worth noting that noise similar to
ripple can be caused by small differences in the voltage gain of the second-
ary sections of T,. Again this will be proportional to error voltage.

In the steady state, V, and V2 ~ O, and the output voltages are
approximately d-c, with values

Vol = v, + v,,
V,2 = v, — v., (v, s v,);

therefore I (67)

v“ = 2VC if V, s V,.
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Thus V~ is linear with the magnitude of the error. If an error of the
opposite sense is assumed, the phase of V, shifts 180°, and the sign of the
output voltage is negative.

If V, > V,, VO, = V, – V, and V, = 2V,. This limiting action is
sometimes desirable if circuits of integral type follow the rectifier, because
it establishes the maximum output that will be “integrated.”

If @approaches 7/2, Eqs. (65) can be written

v, = V“yTm Cos (d + 0’) – v,,, (68a)

v, = V“v: + w Cos (d – 4’) – V02, (68b)

(68c)

It is seen that no net direct current results from the circuit, provided
that either the voltage gains of the secondary sections of TI are identical
or that the differences average in such a way as to produce zero net effect.
In the output, however, there is increased ripple due to the difference in
phase bet,ween v, + V, and V, – V,, because the ripple does not cancel.

This insensitiveness to a quadrature component in the error signal is
very advantageous, not only in eliminating a quadrature component that,
has arisen from some sort of unfortunate characteristic of the error-
measuring circuit but also in separating for a particular servo the appro-
priate error signal from a total error signal that contains data for two
servos. For instance, in radar tracking the total error voltage may be

where CEand CTare the errors in elevation and traverse respectively. BY
applying this error voltage }0 two phase-sensitive-detector systems in
parallel, one of which is supphed with a reference voltage V, = V, sin tit
and the other with a reference voltage V; = V: cos d, the error data
for the traverse and elevation servos are separated into two isolated
voltages. When it is desirable to eliminate a quadrature component but
to obtain the final error signal as an a-c voltage, a phase-sensitive detector
may be used and followed by a modulator, such as the vibrator discussed
in Sec. 3.11.

In some variations of the phase-sensitive-detector circuit, the refer-
ence voltage is introduced separately into the two diode-rectifier sections
in such a way that a nonuniformity of transformer secondaries may
produce a small d-c output of the circuit with zero error. If a zero-error
d-c output exists, regardless of cause, the servo will “stand off” from its
proper zero. Indeed, such” standoff” may exist in a servo because of any
extraneous error data that appear in the forward channel, such as the
pickup mentioned in Sec. 3“11 in connection with the synchronous
vibrator. Its magnitude can be easily established if limits can be set on
the magnitude of the false data. If at the point of origin-of the extrane-
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ous data (of magnitude A) one unit of error produces G units of datum
quantity (volts in the above case), the standoff is A/G units of error.
Thus the later in the loop the extraneous data appear the less is the result-
ing inaccuracy. Amplidynes, for instance, often have an appreciable
output at zero input due to hysteresis; but because they are used in the
final power stage, little inaccuracy results.

(a) (b) (c)
FIG. 3.21.—Equalizing networks for operating on d-c error voltage.

(a) Eo/E, = (Tap + 1)/(Go!i”.P+ 1); (b) Eo/EI = Go[(Z’ap+ l)/(AoTOp + l)];
(C).%/’EI = Go[(TIP + 1)(~24P+ 1)1/[(?’aP + l)(!fb~ + l)].

3.13. Networks for Operating on D-c Error Voltage .-A simple servo
transfer characteristic, such as was presented in Sec. 3.10, is of the form

‘0 – ; (Tip + l)(z’zp +Kk3P + 1)
— —
c . . . (70)

As the gain is increased in an effort to reduce the error in following, the
servo often becomes unstable before the gain is high enough for satis-
factory performance. By insertion of circuits having proper transfer
characteristics in Box 12 (Fig. 3”1), it is often possible to increase the gain
to the desired value and yet maintain satisfactory stability. Examples of
such networks, useful if the error is at a d-c voltage level, are shown in
Fig. 3.21. The transfer characteristics are plotted asymptotically.
This type of plot and its departures from the actual curve will be discussed
in Sec. 4.10.

The network given in Fig. 3,21a has the transfer characteristic

(71)

Such a network is often called a “ derivative-plus-proportional net,”
because it haa the same characteristics as an “ideal” derivative-plus-
proportional device [Y = G(Tp + 1)] for frequencies less than l/(GoTa).
It is not difficult to obtain any reasonable values for the frequt...vies
l/Ta and l/(G,T.).
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Thenetwork given in Fig. 3.21 bhasthe transfer characteristic

~,=~o=GOT.p+l
E, ml’

(72a)

where
T. = RICl, (72b)
Tb= [R, +R,(l –@o)]C,, (72C)

R,GoE—
R, + R,”

(72d)

The resistance R3 is usually determined by requirements of the following
stage. Because this net has the same characteristic as an ideal integral-
plus-proportional device { Y = G[( l/Tp) + 1]] for frequencies greater
than l/Tt,, it is sometimes called an integral-plus-P~oPortional network.
Again, T. and Tb can be established independently.

In servo design, cases often arise in which it is desired to have a
transfer characteristic combining the properties of both of the above net-
works. In order to reduce the number of d-c stages, the networks are
usually combined directly. Such a composite network is shown in Fig.
3.21c. The transfer characteristic is

E.
%

(Tip + l)(T2@ + 1)——

( )[

7
R,

~1~,, + ~a TI,Z’2 p’ +
1

T,+~z4+&(T13+T2) P+l+:a

(73a)

where T1 = Rlcl; T24 s (R2 + R4)C2; TM ~ (RI + Rs)CI; T2 ~ RzC2.

We may write Eq. (73a) in the form

E. (T,P + l)(T24p + Q,
E = ‘0 (Tap + l)(TbP + 1)

Go G ~.
R, + R,

(73b)

The design of the servo loop involves adjusting the magnitudes of
T,, T*4, T., Tb, and GO. The gain at very high frequencies G= is

(74a)

and is also of interest because of the presence of noise in the error signal.
Since it is obviously defined if T,, T24, T., Tb, and GOare fixed, choice of
these quantities should be influenced by considerations of an acceptable
Gm.

If R8 is determined by grid-circuit requirements or other impedance
requirements of the following stage, there are precisely the requisite
number of parameters to establish the four time constants and the low-
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frequency gain GO. It is to be noted that the inequality

GoT~Tz, < ~G.=T. (74b)
a

cannot be violated; the upper limit occurs at Rz = O.
Comparison of Eqs. (73a) and (73b) yields, in terms of Cl and C*, and

the quantities that it is desired to fix,

TeT~ = G, T, T,, + (1
-G”’’Tl+R~cl)[T,4-(%)~3c,l ‘“a)

‘a+Tb= ‘1+ T24+R8(1 -G”’[C’-(%9CJ ‘75’)

Solution of Eqs. (75a) and (75b) for C* gives

G,
c’ = 2R,(1 – G,)’ {

T,G, + T,,(2 – Go) – T. – T,

J [ (%%lT@ -4)
A (T. + T, – GoT, – GoT,,)’ – 4G0 l’eT,

(76a)

Commonly the first term under the square-root sign is much greater than
the second, and so we may obtain the approximation

c, =
GO

[
T2~ –

TaTb – TITZ,GO

R,(I – G,) 1T. + Tb – Go(T1 + T2,) “
(76b)

With this value of C,, Cl is obtained from Eq. (75b):

cl= T.+ Tt, -T1-T’J+l– Gocz
R,(I – Go) Go “

(77)

Then

RI = ::

1–G,
“’R’r I

(78)

“=%-’4+”))
A common difficulty is that the total capacity Cl + Cz becomes very

large, especially if a very large time constant in the denominator is
desired. The expression for the total capacity becomes, with use of the
approximation of Eq. (76b),

1

[

TaT, – !i’’I!f’z4Go
1

I
C, + CZ = R,(1 – Go) Ta+T,–Tl–

T. + T, – Go(T, + 7’,4) ,“ I

(79a) I
I
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Apparently TI should be chosen greater than T,,, although the economy
is not usually impressive. It is seen that the total capacity required
decre~s if Ra can be increased. For usual design requirements on the
time constants, the total capacity also decreases as lower values of GOare
accepted and approaches the lower limit

((Cl + Cz)]im= ~, T.+ T, – T, –
TaTb

)
—.
T. + T~

(79b)

8ince the components of the network are often determined empiri-
cally, an analytical examination of the resulting loop characteristic is
desirable. The values of Go, TI, and T,, are easily obtained, but the
values of T. and Tb are not so obvious. If Ta is assumed to be the larger
of the two time constants, then

J
p+~ 1–;

T. =
2’

(80a)

and

@–P&$
T~ =

2’
(80b)

where

[ 1
6=G0 Tl+Tz, +&( T13+T2)~ (80c)

—

[

R,

1
(80d)~ ~ GO Tiff’24 + ~3 ‘13T2 “

Frequently 4a c @2,and then, approximately,

T,T2, + ~ T13T2

Tb=~=

2’, + 7’,4 + ~ (T13 + T2)’
(80e)

T@-;
[

= G, T, + T,, + ~ (T13 + Tz)
1

– l’b. (80f)

3.14. Networks for Operating on A-c Error Signal.—It can be demon-
strated that if a voltage V = M(t) cos ud, in which m is the fixed carrier
frequency, is impressed on a network the transfer characteristic of which is

Y(j(J) = G[l + jTd(u - 00)1,
the output is

[

dM(t)
VO=G M(#)+Td~

1
Cos CL@.

(81)

(82)

Thus such a network has precisely the characteristics associated with a
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true proportional-derivative device and as such would be useful in equal-
ization of servo loops employing a-c error data.

Many networks have been utilized to approximate the transfer
characteristic expressed in Eq. (81). The network that will be discussed
first is the parallel “T” net,l as given in Fig. 3.22a.

*. 222°‘%0
(a) (b) (c)

FIG.3.22,—Parallel-Tandbridge-Tnetworks.

It is to be noted that a load resistor and a source impedance have not
been included in Fig. 3.22. If Y(p) is the transfer characteristic of one
of the networks of Fig. 322, Zr the input impedance with the output open-
circuited, Z{ the impedance looking back into the output with the input
short-circuited, then

‘=(’+a(’+%’y(””=“(p)’’83
where Z is the source impedance to the voltage Eo, ZL is the load imped-
ance, and 222 = 21 + 2,[ Y(p)]z. The deviations of Y’(p) from Y(p)

have been investigated, both by mathematical analysis and by actual use
of the nets in servos, and have been found, in general, to be small when the
values of Z and ZL employed are those associated, for example, with a
synchro or a low-impedance phase-shifting net as a source and a vacuum
tube as a load. In the following dkcussion the source impedance and load
impedance are neglected, with the approximation that they are zero and
infinite, respectively.

The general expression for the transfer characteristic of the parallel
T of Fig. 3.22a is

E. [TIZ’2T,P’ + T](S2 + T3)P’ + (T, + Sl)p + 1]
E = \T,TzT@ + T,(S* + Z’,)p’ + 7“2(2’, + s, + !r,)p’

+ (T, + S, + T, + s, + T3)P + 1] (84)

where T1 = R, C,, Tz = RZC9, T3 = R&a, A’1 = RI C’, and S2 = RZCa.

This expression may be made to assume the form

1A. Sobczyk, “ Parallel ‘ T‘ Stabilizing h’etworks for A-c Servos, ” RI, Repoti
No. 811, Mar. 7, 1946,
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Eo=(:’+’)(i’’+i:fi’+l), l+’Td”*(u-@O...-
“ (:’+’)($’2+$’T=E1+’’W(”-”‘

(85)
if the following relations are satisfied:

~, = ~(d7du’+2Z L+LLloz’d)
T~

()

)

2wl 1 – ;d

u’
Tz = ~J

I

T, = &,

\

(86)

&=;T:+g – T,,

2
S’=; –—– -&u – T,.

u~Td

If the modulation of the input voltage does not create sidebands lying
far from m, Eq. (85) approximates the ideal characteristics of Eq. (81),
except for the presence of the time lag 1.

The physical requirement that SI and S, be positive imposes on u the
simultaneous restrictions

12
—–;odl–l’u; <u<&o–

~ – T@o
*O + ;0 dl – l%: (87)

2& – MT~ (1 + v’1 – t’u~) < ~ < %0 – tiol’d (1 – /1 – t’ti$)
~ _ ~ _ ~Tdu2

Td o 4 – ;d – i?’du:

(88)
It is to be noted that, for realizability, 1 s l/wo.

A design procedure is apparent. It is assumed that theoretical or
experimental considerations have determined acceptable values of Td
and 1. The carrier frequency wo is, of course, known. The restrictions
on u are established by Eqs. (87) and (88). The time constants Tl,
T’, 2’3, S1, and St are computed, with a value of u not too near the end
points for a reason discussed later. Then if one component, C~, for
example, is specified, the other components are determined, because

The choice of u and of the one component should be influenced by
impedance considerations. The input impedance, with the output open-
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circuited, ZI, and the output impedance with
Z., can be expressed as functions of u and Ca:

[SEC. 3.14

the input short-circuited,

()ZI (78,E =
Wo

(:o’+’)(+’+a’+’)
%+++)++:15’3

, (Wa)

+(&-&) (;+*) P,+(*+:+l)P

()z. Cs,~ =

‘,($+:)”
+[(+d+9(’+s’w0’+T’l’+(’+s’wO). (,,,,

@4:’+1)(+?2+a’+1)
It is evident that as u approaches an end point of one of the critical

regions, so that SI or S2 approaches zero, ZI approaches zero. Also, to

avoid low input impedance, the gain G = l/1’d should not be chosen too
near the upper bound of l/( Two).

Shce odd sizes of condensers are difficult to obtain, it is useful to
present a design procedure that may be applied when values of Cl, C~,
and Ca are known and values for & R2, and &are desired for a given Td.
The relations are

1
Rs=—

U4mca’

(91a)

(91b)

(91C)

in which u must be a solution of

2 c,(c,+cJu*-g*u+ 2 Cacl + Ca“,
c,

— — = o. (9M)
uOT.i C*C, c1 u#d C:

For Cl = C; = Ct,the positive solutions for u are u = l/@ and
u = 2/( TJwo). The gain G = l/Td can be obtained from the expression
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2 C1+C3

(

woTd
G–= --’m--

)

+ (ooTw + 2.

++”

(92)

Table 3.2 presents circuit constants for the case of three equal condensers
(u = 1/+2).

—

Two

2.5
5.0
7.5

10.0
15.0
20.0
30.0
40.0
50.0
60.0

m
—

Tnrz 32.-PARALLEL T WITHEQUALCONDENSERS
R, = 0.003751 megohms, c, = c, = c? ==1.000 #f,

j. = 60 CPS

Re-

Notch R, X R, X Input output
103, 103,

verse
Forward Reverse

interval, impedance impedance phase
meg- meg- gain gain z, x 103, 20 x 103,Cps shift
ohms ohms megohms megohms at Uo,

degrees

+24.0 1.9980 1.760 0,225900 0.174190 1.324-1. 545j 1.79&1, 768j –5.00
*12. O 1.4680 2.395 0.110500 0.094550 1.303-1. 573j 1.565-1. 768j –1.84
* 9.0 1.2910 2.723 0,076900 0,064670 1.302-1. 620j 1.469-1. 768j –0.95
k 6.0 I. 203o 2.934 0.0523700.048070 1.28*1 .640j 1.418-1 .768j –0.57
* 4.0 1.1140 3.155 0.033950 0.032000 1.280-1 .675j 1.364-1 .768j –0.27
* 3.0 1.0700 3.286 0.025050 0.023940 1.274-1. 695j 1.337-1. 768j –0.16
* 2.0 1,0260 3.427 0.016400 0.015900 1.267–l.717j 1.306-1 .768j –0,06
+ 1.5 1,0040 3.503 0.012180 0.012020 1,264-1 .729j 1.29>1. 768j –0.04
* 1.2 0.9907 3,550 0.009682 0.009500 1.261–1,737j 1.285-1. 768j –0,02
* 1.0 0.9818 3.582 0.008034 0.007910 1.260-1. 742j 1,279-1, 768j –0,01

kcmant 0.9378 3.751 0 0 1.250-1. 768j 1,250-1. 768j o

The “notch interval” as recorded in Table 3.2 is defined as the fre.
quency interval between the points for which the output of an ideal
proportional-derivative net would be @ times the minimum output.

In Table 3.2, the resistom are in megohms and the capacitors in micro-
farads. A parallel T differing only in impedance level may be obtained
by multiplying the resistors by a constant and dividing the capacitors
by the same constant. For certain classes of parallel-T networks, a
proportional-derivative characteristic still exists if input and output are
interchanged; Table 3.2 also gives some of the reverse characteristics of
the T described there.

It is worth mentioning one method of using a parallel T that is some-
times useful in experimental work in which it is desired to obtain a value
of T~ empirically. If T~o is taken to be infinite in the preceding for-
mulas, a resonant parallel T is obtained, with a transfer characteristic

“X-& (u . ..)jl Zu

“-0 (. – u,)l+jl ~
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If this resonant T is then connected as shown in Fig. 3.23 to a poten-
tiometer of impedance low compared with the input impedance of the T,
the output can be written as

E. R,
-0 (. – .0)1 + jT,i Zu

R, + R,z=—
(93)

“*” (. – .,) ‘l+jl Zw

in which T.i = [1 + (R l/Rz)zU and can tkus be adjusted within the
limits 1< T.i < [1 + (R,/R,]L

E*O

FIG. 3.23.—Circuit for variable 2’,+

As interesting simplification of the parallel T follows if, in Fig. 3.22a,
either RZ = O or Cl = cc. Then circuits of the form shown in (b) and
(c) of Fig. 3.22 are obtained. Such networks are commonly called
bridge-T networks. In an effort to discuss the circuits simultaneously,
the parts have been renumbered.

The transfer characteristic is

E. T,T,P’ + (T, + S,)p + 1—.
E,

(94)
T,TsP’ + (T, + & + TS)P + 1’

where T1 = R,C1l Tg = R&a, and S1 = RK~ in Circuit b and S1 = RL’~
in Circuit c. To obtain the approximate derivative characteristic of the
form

E. 1
“~” (U – .0)1 + jT.i Zu

—.—

E,
-0 (. – too) ‘‘d l+jl Zu

the time constants must be defined by the following relations:

()T3=$0 ;–;d,

T, =

01

1
7

2;– J-
Td

(95)

(96)

“2”1
S1 = TN:

——

( ))

11”
2 i–~d
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For positive S,, the gain G = l/T~ must satisfy the inequality,

(97)

Since for the parallel T the upper bound of gain is l/( T,w,), it is observed
that for a given Td, less gain can be obtained from a bridge T. Because
of noise in the signal, the smaller time lag 1 for a given Td in a bridge T

, is a disadvantage when compared with a parallel T.

TARLE3.3.—CONSTANTSFOR SYMMETRICALBRIDGET. CIRCUIT b
c, = c, = 1.000 /.If

Notch
T,m interval,

Cps

— — —

2.5 &24.O
5.0 *12. O
7.5 * 9.0

10.0 k 6.0
15,0 i 4.0
20.0 & 3.0
30.0 * 2.0
40.0 * 1.5
50,0 * 1.2
60.0 * 1.0

100.0 + 0,6

R, X 103,
megohms

1.06100
0.53050
0.35360
0.26530
0.17680
0.13260
0.08841
0.06631
0.05305
0.04420
0.02653

Input output
R, X 10J,

Gain
impedance impedance

megohms z, x 103, z, x 10’,
megohms megohms

6.63 0.2424200 1.70790-2, 135j 1.60750-2, 009j
13.26 0.0740700 0, 9878G2 470j O.9824C+2,456j
19,89 0.0343300 0.6838132.564j O.6S30&2,561j
26,53 0.0196100 0.52030-2. 602j O.5201&2. 601j
39.79 0.0088110 0.350502. 629j 0.35060-2. 629j
53.05 0.0049750 0.26390-2. 639j O.2639&2 .639j
79.58 0.0022170 0. 1764W2.647j 0.17640-2. 647j

106.10 0,0012480 0.13250-2. 649j 0,13250-2, 649j
132,60 0.0007994 0.10600-2. 650j 0.10600-2. 650j
159.20 0.0005552 0, 0883&2, 651j o 0883&2. 651j
265,30 0.0002000 0. 05304–2.652j O.0530~2. 652j

For Circuit b, in terms of arbitrary condensers,

R, =
2

T,u;(c, + c,)’

01

T,ll
‘3=7 Z+ T,’

‘=T+4)+*)
(’38)

Similar formulas for Circuit c, in terms of arbitrary resistors, are
obtained for Cl, Cs, and G if in 13q. (98) RI is interchanged with Cl and
RS is interchanged with C’s.

For Circuit b

Z,= R,+
T,p + 1

C,T,p’ + (Cl + C3)P’

R3[(S1 + TI)P + 11

‘0 = !l’,!l’,pz + (T, + A’, + T3)P + 1’ I

(99)
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and for Circuit c
1 R,(!f,p + 1)

zr’~p+
(T, + Sl)p + 1’
R,T,p + R, + Rz

‘0 = !l’,!l’,p’ + (S, + T, + T3)P + 1’ I

[SEC.31.5

(loo)

in which 21 and ZOhave the meaning established above for the parallel T.
Table 3“3 gives some circuit constants for the bridge T for Circuit b;

for Circuit c, RI is merely interchanged ~vithC’, and R~ with Ci.
Tolerance requirements have been full y investigated’ for the T net-

works given in this section. The expressions, however, are quite lengthy
and will not be presented. In general, it may be said that to hold the
M of the T to within 5 per cent, the notch width to within 2 per cent of
CW,and the phase shift to zero + 10°, for a parallel T with a !i’’dti,of 15
each component must be held to about 0.5 per cent.

3.16. Operation on 00—Feedback Filters.—In the design of servos
that are to employ an internal feedback loop, it is necessary to obtain a
signal, usually a voltage, from a point in the loop as near the output as
possible. This is commonly obtained from a tachometer driven directly
from the motor shaft. Thus there results a voltage that is proportional
to the speed of this shaft and that may be modified by one of the nets,
discussed in this section, before being subtracted from the error.

If it is impractical to employ a tachometer, a simple bridge circuit with
d-c motors may be used to obtain a voltage proportional to speed. The
motor current may be expressed to a reasonable approximation as

ed — 1<<Q,n

““ = R., •1- R. + R.’
(101)

in which the terms have the same definition as those used in Sec. 3.10.
With this relationship and the torque equation

it can be shown that the output voltfigc Eo from the bridge circuit as
shown in Fig. 3.24, is

(102)

if it is assumed that f~ >> jO.

I Sobczyk, op. cit.
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Often R. includes the resistance o the compensating coil in the motor
required for proper commutation. The positive limit of l’~, (at R, = O)

may be increased, if desired, by shunting this coil with a resistive divider
and obtaining EO between a point on the divider and Terminal 2 of the
motor. When the bridge is balanced, T~,, = O, and a voltage directly
proportional to speed is obtained. hTegative values of T~, are obtained
when Rz/Rl > R~RC. The possi-
ble infinite negative value of T~, ~

R.

suggested by Eq. (102) is a fallacy
resulting from the fact that the e~ R.
viscous damping of the gear train
was considered negligible com- 0
pared with internal damping of
the motor. Actually, the nega- 0 EO 0

tive values of T-O are of little
FIG.3.24.—Bridgecircuitfor obtaining feed-

back voltage.
interest; usually the bridge is
either balanced to obtain the speed voltage or designed to obtain a positive
!l’~O. The presence of the positive T~Ointroduces a derivative term in the
feedback loop and thus can be used to increase phase margin, permitting
higher feedback gain.

In a simple servo loop, if a voltage proportional dO~/di is subtracted
from the error voltage, the effect is identical with that which would be
obtained by increasing the viscous damping, say, in the gear train. This,
of course, has stabilizing action but also results in greater error in follow-
ing constant-velocity inputs. Thus, in servos using such an internal
feedback loop at d-c level for equalization, it is desirable to use a high-
paas network between the source of d-c voltage and the mixing stage in
which the modified d-c voltage is subtracted from the error signal.
Single-, double-, and triple-section RC-filters are commonly used. Net-
works employing inductors have also been used, but the usefulness of
such networks is limited, owing to the nonlinear properties of the large
inductances required (about 1000 to 10,000 henrys).

The single-section high-pass RC-network shown in Fig. 325a is
characterized by a single time constant T = RC, and the transfer func-
tion may be written as

Eo = TP
z l’p + 1’

T = RC, (103)

which, asymptotically, is represented by a rising 6-db/octave section to
o = l/T and a constant O-db gain for high frequencies. Asymptotic
plots and the departure from the actual curve are discussed in Sec. 4.10.
The phase angle is +90° for, low frequencies, decreasing toward zero at
high frequencies. At u = 1/7’ the phase shift is ~ 45°.
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The two-section high-pass RC-network is shown in Fig. 3.25b. Its
transfer characteristic is

E. T1Tzp2—.
E

( )

(lo4a)
Z’,T,p’+ 1+~+~ T,p+l’

where

T, G R, C,, (104b)
Tz = R,C,, (I04C)

Equation (104a) can also be written in two other ways:

Eo = l’.!f’@2
% (T.p + l)(T,P + 1)’
E. (TP)2—.
E (Tp)’ + 2{Tp + 1’

(lo4d)

(104e)

where T. = longer effective time constant,
Tb = Smaller effeCtiVe time COnStant,

f = damping ratio (~ > 1),

T = ~TaTb = flT* = mean time constant.

E_o . T. TbP2
E (T@+l)(Tbp+l)

.~r .,F-~.-..:Z...,. ,

J-
T Ta ~

logW log62
a b

FIG. 3.25.—High-pass filters for d-c feedback. (a) Single-section high-pass filter,
Eo/E = To/(TP + 1); (b) two-section high-pass l?C-network,

Eo/E = (TaT,pz)[(Z’.p + 1)(’hp + l)].

When the asymptotic transfer function is written in the form of Eq.
(104G?), it becomes apparent that it rises at 12 db/octave to u = 1/7’=,
then at 6 db/octave to w = 1,/Ti. and is then constant at Odb for higher
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frequencies (see Sec. 4.10). The12-db/octave portion ifextended to the
O-db axis would cross it at

(105)

It is also apparent from Eq. (104d) that there are only two primary
parameters, !l’~and !!’~; the form inwhich these primary parameters will
beusedhere isl’~/!l’, and @i’~1’, = T’.
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FIG.3.26.—Graph for designing two-section high-pass RC-filter.

The following relations hold between the variables:

(106a),=,’+(:)(1+:)
2 T

)

F,

T.

()

T C,_=7=2p-1+2~ <{*-l =.f~2J~’
T,

(106b)

The relationship indicated in Eq. (106b) is plotted for several values of
C1/C~ in Fig. 3.26.
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In the usual circuits, the output resistor Ra is required to be less than
some critical value due to grid-return requirements or other impedance-
level considerations. With this fact inmind, apossible design procedure
becomes apparent. Experimental or theoretical work has determined
T., Tb, and R,. Thus Y, T, and R, are fixed. By the use of

as given by Fig. 3“26, T/T2 can be determined for a particular choice of
C,/C,. The value of 1’, and thus the value of C, can be then established.
By the particular value of C,/C, employed in determining T/ T2, c, k
established. Since l“, = T’/T,, T, is known, R, is established, and the
components of the filter are completely determined.

Such a procedure, however, ignores the fact that there are four circuit
elements, but it is desired to establish only three parameters. It seems
desirable to use the other parameter to minimize the total capacitance
CO ~ C, + C, used in the circuit.

Fortunately, y increases monotonically with -t. Thus establishing
y, T, and Rt is equivalent to establishing ~, T, and R2. Equation (106a)
may be rewritten as

(106c)

Solving for C, and minimizing C, for fixed ~, T, and Rt produce a new rela-
tionship between ~ and the circuit components:

Comparison of this with Eq. (106a) gives

()c, 2

(-)T, c,

(-)

T*C= C,’_l

c,

(106d)

(106e)

as the necessary condition for the minimization, which makes it possible to
write

[
~c=; ;+’;+ J($y - 1]; (106j9

use of this in Eq. (106b) yields 7C = f(T/Tz), a plot of wkch has been
included in Fig. 3“26.
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Thus, for economy in total capacitance, the design procedure sug-
gested above is modified in that the choice of the value of Cl/C, should be
determined by the intersection of the desired value of ~ with the ye-curve.

General equations relating the tolerance on the components of the
fiker with the variation of T., 2’,, 2’, and -Ymay be derived in the usual
manner.

%++’”)%+(:-’”)%
+(~+BD):?+(~-BD)%“07”)

TABLE3.4.—TOLERANCECOEFFICIENTSFORMINIMUMCAPACITANCECASES

c, T,
C, E

.4L) ED ;+AD ;–AD ~+BD +–i3L)

2 1,333 0.522 –0.174 1.022 –0.022 0.326 0.674
4 1.067 0.307 –0,184 0.807 –0.193 0.316 0.684
6 1.029 0.235 –0.168 0.735 –0.265 0,332 0.668
8 1.016 0.196 –0.153 0.696 –0.304 0.347 0.653

Table 3.4 gives the tolerance coefficients for two of the minimum
capacitance cases. It will be observed that the main contribution to
the errors comes from the square-root relation between T and TIT, and
that the change in the ratio of the effective time constants is of a smaller
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order. This means that a given percentage error in one of the corn-
ponents will produce about one-half of that percentage error in the two
effective time constants.

3.16. Gea Trahs.-For useincontrol, ageartrain must meet certain
requirements of efficiency, reversibility, rigidity, backlash, strength,
and inertia. Unfortunately, theoretical work has not progressed to the
stage where all of these standards can be expressed mathematically.

In regard to efficiency, usual engineering reasoning applies, since this
will directly affect the size of the motor that must be employed. Further-
more, it is to be noted that high starting friction produces rough following
of the input at low speeds. High viscous friction decreases the effective
velocity-error constant. Also, since it oannot be treated as a constant
from gear train to gear train or as a function of time, its stabilizing action
can be a source of serious design error.

At present there is no satisfactorily complete analysis of the problems
encountered when servo control is employed with an irreversible gear
train, such as certain worm reductions. Bitter experience, indicates
however, that except possibly where the load inertia and load torques are
small, irreversible gear trains should be avoided. It is felt that the dif-
ficulty is caused by the locking that takes place in many irreversible gear
trains when subject to load torques.

The rigidity should be such that with the expected load inertia, there
will be no natural frequencies that are less than, as a rough estimate, five
to ten times the highest resonant frequency of the rest of the control
loop. Naturally the rigidity of any portion of the gear train not enclosed
in the loop must be such that errors arising from deflections under load
are tolerable.

Backlash in gear trains, if enclosed in the loop, often produces instabil-
ities of either very high or very low frequency. Usually the amplitude
is of the order of magnitude of the backlash. A rule based onlY on
experience is that the backlash must be less than one-half of the accept-
able following error. If the backlash is not enclosed in the loop, the
resulting error can, of course, be equal to the backlash.

Obviously, the gear train should be sturdy enough to withstand the
maximum torque load that it will experience. An estimate of the maxi-
mum load can be obtained. The torque exerted on the motor rotor
Mm and the torque exerted on the load Ml are related by

Ml =
J,N

J, + J&’ ‘“’
(108)

where Jr is the inertia of the load and Jm is the inertia of the motor
armature and first gear and the inertia of the rest of the gear train, of
reduction N, is ignored.
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L’sually it is only in control problems employing fair-sized motors
that concern exists about tihestrength of the gear train. Thus the motor
is usually direct current, and the relation M = KTin holds over a wide
range of i~. Under severe conditions, however, saturation effects may
occur.

The greatest torque load will be experienced in one oft wo cases:

CASE I: If the load is blocked and a maximum voltage E.,, is applied
to the motor, then from Eq. (108)

Ml = N(Mm)i”,, (109)

since in such a case .l~ = cc . The quantity (M~),m is the torque
associated with a current i~ = E~/Rn and may be less than Kti~
due to saturation.

CASE II: If the maximum voltage Em is suddenly reversed after the
motor has attained full speed, then

M, =
J,N

JI + JmN’
(Mm),,,” (110)

if the motor is assumed to run with a back emf equal to the applied
emf for constant speeds. This is approximately correct with high-
efficiency gear trains and no torque load on the output of the gear
train. The quantity (Mm) Z,mis the torque produced by a current
im = 2Em/Rm,

.k comparison of Eqs. (109) and (1 10) shows that if

(Mm),. < _ 1
(Mm),,. J; “

l+ZN’

Case 11 gives the greater torque but, if

(111)

(112)

Case I gives the greater torque.
In applications involving ser~omotors of a few mechanical watts out-

put, the inertia of the gear train, especially the first mesh or two, is far
from negligible compared \vith the inertia of the motor armature. If
the inertial of the gearing past the fourth gear (Fig. 3.27) is considered
negligible, the following equation may be written for the total inertia .TL
observed at the motor shaft, N’ being the total gear reduction to the
inertia load Jl:

(l13a)

1The fcdlowingtreatmentis from an unpublishedpaperby N. B, Nichols,



132 SERVO ELEMENTS {SEC.S-16

If it is assumed that the gears (of diameter D, width W) are all solid and
of a material with a density p,

In Eq. (llOb), the small inertia of the idler shafts has been ignored
or, if desired, absorbed by change of pinion width W. With the use of
N12 s D2/D1 and N = (D2/DL) (Dd/DJ, Eq. (113b) may be written as

where
as the

JO k the moment of inertia of a motor pinion of the
second gear.

same width

h Ill

e+F% -J
1, J

J.

FIG.3.27.—Spurgear train.

The interest now lies in the value of NIZ that will minimize J, for
fixed values of W,/W2, W@Z, Wd/?V*, N, and D,/D,. Such a value
will be a solution of the equation

() ()N6 _~3 &’Nz _2N2~4 g34 ~

12 W2 D, 12 W, Dl=’
(l14a)

which can be written as
Z3+2=3KZ (l14b)
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if

‘=~2N-%(w’(2r’
‘K=(mw%)”N-”

In general, Kwill be small. Toazero-order approximation

~. = —-2)47 (115)

and to a first-order approximation

Z1 = —2~~(1 — ~Kzo))$ = —2%(1 + >% K). (116)

Usually the zero-order approximation is sufficient. For instance, if
W3/Wz z Wh/W2 = D3/Dl = 1, N = 8, the first-order correction con-
tributes only about 1 per cent to the value of xO. When this correction is
neglected, IVlz = 2.25 and JO = 8.6.Jo. It has often been the practice
to make the first reduction as large as po~sible in a mistaken effort to
minimize inertia. It is worth noting in the above case that if the reduc-
tion of 8 had been taken in a single mesh, the inertia of the gearing at the
motor shaft .l~ would have been 65~0.

The following table compares the inertia of the gear train for the
minimal case with that inertia resulting from an equivalent single reduc-
tion. Again, the assumption has been made that

K3=E4=Q3 =1,
W2 W, D,

TABLE35.-INERTIA OFVARIOUSGEARTRAINS

NM

8.00
2,25

12.00
2.57

18.00
2.94

27.00
3.36

Iv,,

3:56

4.67
,.. .
6,12

8:03

N

8
8

12
12
18
18
27
27

65.0
8.6

145.0
11.1

325.0
14,0

730.0
18.1

(a), in.z 02

0.0074
0.0010
0.0165
0.0013
0.0369
0,0016
0.0828
0.0020

(b), in.z 02

0.372
0.049
0.832
0.064
1,870
0.080
4.180
0.103

Table 3“5 gives in Column (a) the resulting inertia if JO is from a
9T, 48P, &in. -wide brass pinion and Column (b) is from a 24T, 48P,
&in. -wide brass pinion. These inertias maybe compared with a motor-
armature inertia of 0.077 in. 2 oz for a Diehl two-phase 2-watt motor
(FPE25) and 0.66 in.’ oz for Diehl 11- and 22-watt motors (FPE49-2
and FPF49-7).



CHAPTER 4

GENEIUIL DESIGN PRINCIPLES FOR SERVOMECHANISMS

BY N. B. NTICHOLSj W. P. MANGER, AND E. H. KROHN]

The systematic treatment of multiple-loop servomechanisms is quite
complex and will not be attempted in this chapter. Systems with only

w

one independent input variable will first be treated:
the discussion can be readily extended to systems
with more than one independent input variable by

FIG. 4 1.—Single-differ- the usual superposition theorem which applies to
entialservosystem. all linear systems. ,

4.1, Basic Equations.—The simplest single-input servomechanism has
only one error-measuring element (the differential in the usual symbolic
diagram) and one transfer element. A simple example of this type has

been discussed in Chap. 1; its symbolic diagram is shown in Fig. 4.1.
Its equations may be written

~=el —go, (1)

Y,,eo –
K 1 + Y1l’
c 1
x= 1 + Y1l’

(2)

(3)

(4)

where Yll, 190,01, and c are functions of p or @, depending on the type of
solution desired. The function YI I is called the loop transfer function or
the feedback function and is usually composed of a number of products
that are the transfer functions of the individual elements of the servo
loop. The hTyquist stability test discussed in Chap. 2 can now be
appfied to the loop transfer function Y1l, to determine \vhether or not
the expressions in Eqs. (3) or (4) correspond to a stable systcm. The
interpretation of the test is simplified if, as is usually the case, YI I(p) has
no zeros or poles in the right half plane when p is regarded as a complex
variable.

For the simple servo considered in Chap. 1 \vehave

(5)

~N. B. Nichols is the author of Sees. 41 and 4.14 to 4.19 inclusive; W’, P. Manger
of Sees. 42 to 4.9, and 4.12 to 4.13; E. H. lirohn of Sees. 4.10 and 4.11.

134



SEC.41] BASIC EQUATIONS

where K, = velocity-error constant,
Z’~ = motor time constant.

Adding an equalizing lead network, we obtain

K.(l”lp + 1)
Y1l(P) = ~(~mp + 1)(T2P + 1)’

135

(6)

where 7’1 = lead-network time constant, sometimes called the derivative
time constant,

Z’Z = lead-network lag (less than T’,).
Proceeding in this manner, we can build up more complex functions for a
single-loop or single-differential systcm,

In a two-differential single-input system there are two possible con-
figurations, as illustrated in Fig. 4.2. These systems include another

‘i!ailigm
3 e~

(a) (b)
FIG. 4.2a and b.—Two-differential servo systems.

type of junction, which may be called a branch point. A branch point
has one incoming function and two outgoing functions which are identi-
cally equal to the incoming onc, The differential junction has two incom-
ing functions and one outgoing function which is equal to the algebraic
dfference of the two incoming ones. The symbolic diagram or the associ-
ated equations must, of course, indicate which of the incoming functions
retains its sign on traversing the junct ion and which changes its sign.

The equations for Fig. 4.2a may be written

c+eo=e+Y31e3=er, (7)
~2+ 1902— 012= C2+ Y3283 — Y12E= O, (8)

03 – Y2362= o. (9)

Using Eqs. (8) and (9) and eliminating c,, we find

(lo)

where the expression on the right may be looked upon as the effective
transfer function between the output of Ylt and the input to Ytl. The
expression on the right may be rewritten to obtain

03 1 Y22
Y12E= Y3, 1 + Y,;

(11)
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where Yzz is the loop transfer function for the subsidiary loop associated
with differentia12 in Fig. 4.2a. Using Eq. (7), one obtains

y12ya1 Y2200

‘= YS2 1+Y22E
(12)

or
:0 = Y12Y2aYs1 = Yh

e 1 + Y23YS2 1 + Y22’
(13)

where Y~l is the loop transfer function associated with differential 1
when Y,z = O. We also have

00 y~l

Ii = 1 + Y;l + Y22’

‘f 1 + Y22

ii= 1 + Y~l + Y22”

(14)

(15)

Inspection of Eq.(13)-shows. that if Y?J(l + Yzz) has no zeros or
poles in the right half plane, then th; norrnal..Nyquist stability test may
be used to determine the stabihty of the over-all system characterized by
Eqs. (14) and (15). Since Y~l by itself usually satisfies this requirement,

it is neceaaary to inquire if 1/(1 + YzJ separately does. It follows that
application of the simple Nyquist test to the over-alJ system requires
that the subsidiary loop represented by Eq. (11) be stable. The two-loop
transfer functions enter Eqs. (13) to (15) in a rather simple manner that
permits an easy derivation of the system equations. Combhing Eqs.
(12) and (7), one obtains

YlzYal Y22

00 = Ya2 1 + Y22 Y1l

ii ~ + Y12Yal Y22 = 1 + Y1l-
(16a)

Ya2 1 + Y22

Equation (16a) emphasizes the reason for calling this a twdoop
system: YZZappears in Y1l in the same manner that

Y,2Y3, Y22
Y1l = Y32 ——

1 + Y22
(16b)

appears in the complete expression for oJo1.
In Fig. 42b there are two single-element paths for data to leave junc-

tion 3 and enter junction 2. The equations associated with Fig. 4%
are easily shown to be

00
— = Yla(y. + yb)y21, (17)
e

g= Yla(ya + Yb) Y21

8, 1. + yla(y~ + Yb) y21’
(18)

1
I

I

I
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where differential 2 has been assumed to have the equation

22 = Ya03 + Y#&

One observes that Y. and Yb enter Eqs. (17) and (18) in a different man-
ner from that in which YW and Y23 enter the previous equations. The
transfer function between junc-
tions 2 and 3 is really only the
sum Y= + yb; there is no loop
equation associated with differen-
tial 2. In other words, Fig. 4.2h
is in reality only a single-loop sys-
tem with a loop transfer function
y13(Ya + Yb) Y21 = Ym

There are many three-differ-
ential systems, and no exhaustive
treatment is contemplated here.
The schematic shown in Fig. 4“3
has been used in amplidyne ser-
vos employing quadrature series

I 1
FIG, 43,-A three-clifferentialservosystem.

and armature voltage or tachometer
feedback for equalization, together with an error-signai equalizer. The
equations for Fig. 4“3 may be written as

~+eo=e+yblob=el, (19)
Cz— Y126+ Y3223 = o, (20)

23 – Y4384 – Ys3es = o, (21)

e4 – Yz4~2 = O, (22)

e, – Y,se4 = o, (23)

where Ylz = error-equalizer transfer function,
YZA= pOWer-amplifier and amplidyne tranSfer fUnCtiOn (Open

circuit),
Y4S = quadrature-series field transfer function,
Y4S = motor-amplidyne transfer function,
YSS= tachometer transfer function,
YSZ = feedback-equalizer transfer function,
YE., = gear-train transfer function.

Solving the five simultaneous equations for a number of the variables, we
obtain

~= Y12Y24Y45Y61

0, 1 + Y12Y24Y46Y61 + Y24Y43Y32 + Y24Y46Y68Y82’

(24)

e 1 + Y24Y43Y32+ Yz4Y45Y53Y~*

– = 1 + Y12Y24Y46Y41 + Y24Y43Y32 + Y24Y46Y68YS2’e,
(25)
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Y,21’241”45Y5,~~= _. ---–- ._ __,.
e 1 + Y24Y43Y32 + Y2; Y45Y53Y3Z

(26)

Y241’43Y3, + Y24Y451’53Y32e“~= _____ ____________
7; 1 + Y24Y43Y32 + Y24Yi5Y53Y32’

(27)

0.,—. YZ4Y1SY3Z + YzlY~~Y~3Y32.
~z

(28)

Other relations between the variables may be obtained by simple com-
bination of the above, as, for example,

Combination of Eq. (29) with Eq. (24) gives

04. ___ Y,, Y2,
e; 1 + Y121724Y43Y5, +–Y24y43Y32 + Y24Y45Y53Y32”

(30)

The previous equations are in proper form for a A’yquist test of suc-
cessive loops in order to determine the stability of the system. Inspec-
tion of Eq. (24) shows that the equation for this circuit is the same as
that of a two-loop system [see Eq. (14)] with an inner-loop transfer func-
tion of Y24Y43Y32+ YZ4Y45Y53Y32and an outer-loop transfer function
given by Eq. (26). This means that one can first study the loop
characterized by Eq. (28). The difference between the number of zeros
and poles in the right half plane of the function

1 + Yz4}’43Y32 + Y24Y45Y53Y32

can be found by means of the N-yquist test. In the usual case there will be

no poles or zeros (the inner-loop equalization networks being designed to
give no zeros), and the system will be stable when the outer loop is opened
by making Y~~zero (reducing preamplifier gain to zero). Having applied
the IYyquist test to the inner 100P, one may draw the A’yquist diagram
for the complete system by the use of Eq. (26) and determine the dif-
ference between the number of zeros and poles of 1 + Oo/c. In order
that the system be stable, 1 + O./c can have no zeros in the right half
plane. If the inner loop is stable and, as is usual, Y12YZ4YMY,l has no
poles in the right half plane, then 1 + O./c will have no poles and the
simple Nyquist criterion will apply.

4.2. Responses to Representative Inputs.-A general discussion of
the nature of typical servomechanism responses to representative inputs
requires a general definition of the functions that characterize servo-
mechanisms. All the mathematical knowledge available from an inspec-
tion of the structure of a servomechanism can be given by a statement of
the loop transfer functions for each closed loop in the system. The
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following discussion will apply toatwo-loop system. The analYsis can
readily be extended to include multiple-loop systems if desired. The
transfer function of the principal, or error, loop, when the other loop is
open, will be denoted by Y~l(p); it will be of the form

p (,)= K,,., IA&11

The loop gain of the inner loop may be written as

Yj,(p) = K,,% *f,

(31)

(32)

where f and g are polynomials in p of the general form

and the a’s are integers.
The transfer function relating the output 0. to the input O, can be

written

: ‘p)= 1-++;;! Y$,(p) = 1 ;’}:\ p)”
(34)

We now proceed to establish certain limitations imposed on the loop
transfer functions Y(p). Suppose that a unit-step function input is
applied to the servomechanism \vith transfer function given by Eq. (34).
‘Then

Y;,(p) 1
t%(p) = ~ —.—.

1 + v, (P) + Y!Z(P)
(35)

The asymptotic behavior of 00(t) for large values of t is given by (see
(’hap. 2)

lim t?.(t) = ~lo p%(p)
t+ cc

or

lim %(t) = lim
(

K,p”,

t+ m )
~+o 1 + K,p% + K@a~

(36)

If the servomechanism is to have zero static error, tk,(t) must approach
1 for large values of t. Evidently czlmust be negative for this to be true.
Equation (36) may be written

lim %(t) = lim
(

K,

t+ m )~-O P–a’ + K1 + K’p”l–”z
(37)

It is seen that a, must be less than O and a’ must be greater than al in
order that the servomechanism have zero static error.
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The condition on al can easily be derived from physical reasoning.
We consider Y1l(p) as the loop gain and imagine the loop to be opened as
shown in Fig. 4.4. If a steady signal c is applied as shown, then the out-
put Ooshould move continuously in an attempt to balance out this error
signal. This will be the case only if the exponent m is equal to or less
than – 1. We call any feedback loop having a transfer function of the
form of Eq. (31) or (32) a” zero-static~rror loop” if al ~ – 1.

The restrictions on m are somewhat more complicated. When
al = —1, we have the condition a2 ~ O. Thus the subsidiary loop can-

F[c. 4.4.—Simple servo with feedback
loop opened.

not be of the zero-static-error type if
the over-all loop is to be of the zero-
static-error type. In a system with

al ~ —z (we will see later that such a
servomechanism is characterized by
zero final error when following a con-
stant-velocity input) it is necessary
that a, z – 1. Such a servomech~

nism may then have a subsidiary loop of the zero-static-error type. It
will be seen subsequently, however, that in the presence of such a sub-
sidiary loop the over-all loop will noi be characterized by zero velocity
error.

A further restriction is placed on the loop transfer functions of Eqs.
(31) and (32), in that they must approach zero at infinite frequency.
In practice this is assured by the presence of par~sitic elements in the
loops. In terms of Eq. (33), we must have r + a < s. It is sometimes
convenient to ignore this restriction when investigating only the low-
frequency characteristics of a system. One must, however, always be
careful not to draw unwarranted conclusions when this condition is
neglected.

It can be shown that the over-all transfer function O.(p) /O,(p) has the
same general form as the transfer function of a low-pass filter; such servo-
mechanisms can be considered as a special class of low-pass filter. The
frequency response of the two-loop system is given by Eq. (34), with
ju substituted for p. Making use of the least severe restriction on az,
cm = al + 1, Eq. (34) becomes

: (j.) = K, #
(j.)-. + K, Af + I@=” ’38)

For zero frequency thk reduces (for a, negative) to

(39)
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Forvery large frequencies OO/Olapproaches zero at leaat as fast as I/u,
and we see that a servomechanism does indeed behave like a low-pass
titer. An ideal servomechanism, able to reproduce an input signal
exactly, would of course have a transfer function of unity, that is, would
be an ideal low-pass filter with a very high cutoff frequency. (This
description of an ideal servomechanism is reasonable only in the absence
of noise, since only then is it desirable to reproduce the input signal

t

(b)

FIG.4.5.—(a) Characteristics of ideal low-pass Slter; (b) characteristics of real low-paw
lilter.

exactly.) Such a system cannot, however, be physically realized, and
our problem is that of synthesizing a low-pass structure that will repro-
duce input signals with sufficient fidelity for the purpose being con-
sidered in any given application.

Communications engineers have defined an ideal low-pass filter to be
one having a transfer function with magnitude and phase such as are
shown in Fig. 4.5a. This filter has a gain of unity in a finite pass band
from a = O to u equal to some frequency m. The gain outside this band
is identically zero. The phase of the transfer function is zero for u = O
and varies linearly with u in the pass band. The phase can be left unde-
fined outside the pass band. It should be pointed out that it is not
physically possible to construct a filter with such a rapid cutoff, and we
might thus expect some nonphysical behavior of the filter. This particu-
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lar transfer function is chosen, however, since it enables one to obtain
some rather simple relationships between the frequency and transient
behavior of filters. If we suppose that a unit step function is applied to
thk filter, we can compute the output by means of the inverse Fourier
transform. The result is’

where Si(z) is the sine integral of x, given by

(40)

(41)

Equation (40) is plotted in Fig. 46a. Examination of Eq. (40) shows
that the response is small but not zero for negative time—one of
the nonphysical characteristics introduced by the arb~trary choice of the

Bu!ldwtime‘+ ~ ---A
k7b~

1.0

=

-005
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o 1-

~— go .-J

Delaytime (a)

Pericdof
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BuJduptime

.~;qt

~rb~
1.0

=
;0

05

Oyo+ ‘—

Delaytime (b)

FIG-,46.-(a) Transient response of ideal low-pass filter; (b) transient response of red
low-pass filter.

transfer function. Aside from this behavior, one observes that the
response is a damped oscillatory one which reaches a value of 0.5 at a
time 7d = oJu,, that may be callecl the delay time. ‘I’he oscillatory
period is 27r/wo, and the first overshoot is 9 per cent. We can define the
buildup time Tb as the time that would be required for & to increase from
O to 1 at the maximum rate. To evaluate the buildup time we calculate
the slope of the response curve at t = 1$0/uo:

Thus ,bwo = m, or, with UO= 27r~,,

Tbfo = ;. (43)

This expression, together \~iththe expressions for the delay time and oscil-
1E, A. Guillemiu, C’mnmunicaticmNetworks, VO1.II, Wiley, New York, 1931,

p, 477.
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latory period, gives the salient relationships between the frequency-
response behavior and the transient response of an “ideal” low-pass
filter.

The forms of the attenuation and phase characteristics of a physical
low-pass filter are shown in Fig. 4.5b. This real filter differs from the

ideal one in that there is some transmission outside the nominal pass
band and there are some frequencies in the pass band that are transmitted
with gain greater than unity. The phase characteristic is also not a
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FIQ.4.7.—Transientresponseforthetransferfuncticm(T’P’ +2(TP +l)-l.

linear function of frequency. We shall define uo for such a filter as the
value of u at which It90/ozl is —3 db. In the case of filters having a
peaked or resonance response it is sometimes convenient to define m as
that value of u at which the response becomes unity after the peak. The
step-function response of such a filter is sketched in Fig. 4.6b; it is of
the same form as the response of the ideal low-pass filter. The response
is, of course, zero for negative time.

A low-pass filter characteristic that occurs frequently is given by

(44)

The responses of thk filter to unit-step functions, for different values of
(, are plotted in Fig. 47, and the frequency response characteristics for
similar values of ~ are plotted in Fig. 4“8. The correlation exhibited
between the peak height [maximum value of 100(u)/&(0) Iin the complete
frequency range] and the magnitude of the overshoot of the transient
response is representative of most servomechanism performances. The
magnitude of the first overshoot of the step-function response, the fre-
quency-response peak height, and the frequency at which the peak occurs
(or the frequency at which the gain has dropped to unity) are often used
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as figures of merit of performance. The buildup time is often considered,
also, and the general relationships between these quantities which have
been illustrated are very useful in the synthesizing of a system to meet
given specifications.
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A constant-velocity input 61 = W is a good approximation to many
typical servomechanism inputs, and the response to such an input is of
interest. Making use of Eq. (34), we can write the asymptotic form of
e(t), for large t, as

(Q
lime(t) =lim ––s

K1pUI

t+ m ~o P )p 1 + K,puI+ K,P”’ “
(45)
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If al = – 1 and az = O, this reduces to

1+K2
lim f(t) = fl —KY = #.

t+ m v
(46)

The output thus follows the input with a constant position error equal to
the input velocity divided by a constant called for obvious reasons the
“velocity-error constant. ” This is a characteristic of all zero-static-
error servomechanisms. If al = – 2 and az 2 0, the servomechanism is
said to have zero velocity error, since a calculation similar to the preceding
one shows that for a constant velocity input 81 = Qt,

lim c(t) = 0.
t+ m

If a constant acceleration input 01 = ~At* is applied to this servo-
mechanism, and if al = —2 and at = O, then

1+ K2 =:.lim ,(t)= A ~
t+ m a

(47)

This equation defines the” acceleration-error constant” for this particular
system. The definition and interpretation of velocity and acceleration-
error constants and other error constants will be discussed more thor-
oughly in Sec. 4.4.

4.3. Output Disturbances.-The performance of a servomechanism
may be influenced by man y extraneous’ cinputs” to the system. Changes

t .

~“(”
Fm. 4.9.—TwIAooPservomechanism.

in the gain of vacuum tubes, changes in the values of resistors and con-
densers, ripple on the plate-supply voltage of vacuum tubes, changes in
friction of bearings, and transient torque loads are all examples of such
external influences. It can be shown with great generality that the
presence of feedback in a system results in a reduction of the effects of
such influences. Rather than attempt such a general treatment, we shall
discuss only the important case of transient torque loading on the output
of a servomechanism.

Suppose that we have a twdoop servomechanism, as shown in Fig.
4.9, where the output of Element 2 is the servomechanism output t%.
Element 2 is assumed to be a motor characterized by inertia J and a
viscous damping coefficient j.. An external torque Z’(t) acts on the out.
put shaft. The input signal to the motor is denoted by .E. The differen-
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tial equation for Oocan then be written

Jp’eo + fmpeo = Kmjm&+ z’(p) (48a)

or
~. = ~2t + ~, y~),

Kmfm

where

Y, = ““
p(l”mp + 1)”

From the basic equations for a two-loop system

T(p)
~el– Y:l —

<= Kmfm
l+ Y;, +Y~2”

If O,is set equal to zero, then

(48b)

we have

(49)

h’ote that the response of the system without jee~back to T(t) is simply

co(p) . K&l;

(50)

(51)

the presence of feedback modifies the response by the function (or opera-
tor) in the parentheses in Eq. (50). For a single-loop servo Eq. (5o)
reduces to

()Y,T(p) 1
Oo(p) = n l+ Y,,”

(52)

This result is similar to the familiar theorem of feedback-amplifier theory
which states that the effects of changes in parameters and external influ-
ences are reduced by feedback in the ratio 1/(1 + L@), where P@ is
the gain around the feedback loop.

As an example, let us use Eq. (50) to compute the asymptotic response
of a zero-static-error servomechanism to a sustained torque TO suddenly
applied to the output shaft. We have as before

Y,T,
lim %(t) = lim —

(

1 + Y$2

t+ m P+o Kmjm )l+ Yq, +Y:2”

Using the characteristics of Y!, and Y$, discussed in Sec. 4.2, we find

()2’0 1+K2
lim do(t) = ~ ~ — _— .

,!-) . . = f.:. – ::
(53)

The quantity K? is called the “torque-error constant” and is directly
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proportional to the velocity-error constant. It follows that a zero-
velocity-error system will have an infinite torque-error constant ;that is,
a const ant load torque will not cause an error in output position.

Equation (50) can be used to compute the response of a system to any
arbitrary torque loading if such a calculation is necessary in a given
application. Usually, however, a computation of KT gives enough
information. Since we are dealing with linear systems, the errors result-
ing from torque loadlng or other external influences add directly to the
errors that are caused by the dynamics of the system when following any
input signal.

It should be noted that the response to a torque disturbance T(t) is
identical with the response to an equivalent input signal

()Y,T(p) 1 + Y:,
‘“’(p) ]e’’”iva’e’”= Kmjm Y~l

(54)

Frequently, particularly for simple systems, this equivalent input is
easily calculated and is of such a nature that the response is readily
estimated from a knowledge of the step-function response of thes ystem.

4.4. Error Coefficients.-The discussion in the preceding sections led
naturally to the definition of certain system parameters called “error
coefficients, ” which characterized the performance of a given system to
some given input. Specifically, we have defined the velocity-, accelera-
tion-, and torque-error constants for several simple systems. The con-
cept of error coefficient can be considerably generalized, and such a
generalization provides a very useful and simple way of considering the
nature of the response of a system to almost any arbitrary input.

We consider the Laplace transform of the quantity c/t?, for a general
servomechanism and assume that it can be expanded as a power series
in p, valid at least for small p. Calling this function M(p), we have

(55)

Proceeding in a formal manner, we have

6(P) = ~(P)eJ(P) = CoOr(P) + ClP@I(P) + : P2&(P) + “ “ “ . (56)

The region of convergence of the power series for M(p) and c(p) is the
neighborhood of p = O. These series can therefore be used to obtain an
expression for c(tj hhat is valid for large values of t, that is, for the steady-
state response. This result is

~(t)=coor(t)+cl~;+:y + “ “ “ .
t+ .

(57)
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The error is seen to consist of terms proportional to the input, the
input velocity, input acceleration, and, in general, still higher derivatives
of the input signal. The constants C., defined by Eq. (55), are clearly
a series of error coefficients which can be used to calculate the steady
state error of the servomechanism. Assuming that the Cn’s are known,
let us examine a few typical calculations. If O,(t) is a unit-step function
of position, then the steady-state error is simply Co. If O,(t) is a step
function of velocity, then COmust be zero for a finite error; this finite error
is then simply CIQ, where fl is the input velocity. If 81(t) = ~AP,

for a finite error, COand C, must be zero. Comparing these results with
Eqs. (46) and (47), Sec. 4.2, we see that the C’s are related simply to
the error coefficients previously defined. For instance,

c, = +, c, = #
“ a

(59)

Let the input be a single-frequency sinusoid: OI(t) = o sin uoi. Equa-
tion (57) formally gives the result

The error is sinusoidal, and its amplitude is given by o times the square
root of the sum of the squares of the two quantities in parentheses in
Eq. (60). The restriction to small values of p, considered earlier as a
restriction to large values of t, corresponds in this case to a restriction to
small values of w,. This is perhaps more easily seen if \vego back to Eq.

(55) and consider ~ (jo) rather than ~ (p). We would then have

~(j@)=CO+CJjU–~–#jti3+~@’ +. . . . (61)

Tak~ng the absolute vah~e of both sides, \\’efind

[( )
co-g+ %-... 2Itl = 10,1 ,

( )1

2 }$
+ c,. – c;;‘+”0. .(62)

Equation (61) will converge if the C’s are bounded. In this event
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Eq. (62) is also a reasonable expression and yields the same amplitude
andphaee of c as Eq. (60). In most cases of practical importance the
static-error coefficient COis identically zero. Furthermore, the series in
Eqs. (55) and (61)usually converges suficiently rapidly to allow reason-
ably accurate calculation of errors using only the first few terms; very
often Cl and Cz are entirely sufficient.

It can beconcluded from the above discussion that Eq. (57) can be
used to compute the errors resulting from any arbitrary input signal,
providing the Fourier spectrum of the input signal contains only very low
frequencies or at least is heavily predominant in low frequencies. This
is very often the case in practical applications. The input signal to the
elevation servo of an automatic-tracking radar gun director following
a plane on a crossing course, for instance, is of this general nature.
Examples of calculations for such a signal, using the results of this section,
will be given in Sec. 4.19 of this chapter.

So far in the discussion it has been assumed that the coefficients in
the power-series expansion in Eq. (55) are known. We must now con-
sider the general nature of the function M(p) and the manner in which
the C*’S are determined. In Sec. 4.2 the loop transfer function of a

single-loop zero-static-error servo was seen to be of the form

(63)

where n = +1. We can then \vrite

If fl and gl are relatively uncomplicated functions of P, the first few terms
of the series can often be written down by inspection. If this is not the
case, then the C’s may be computed from the formula for the usual Tay-
lor series expansion

cm= [$~(,--+=)lp=i
(65)

Taking n = 1 and assuming j(p) and g(p) to be in the form of Eq. (33),
we easily find from Eq. (64),

1 c2=b1–a, 1
co = 0’ c’ = F,’ T – @

4(a, – b,)
[

(66)
C3 =$3+ ~,

+ 2(a~ – a,bl + bz – a,)

1 1 K,

Entirely similar results can be derived for the more complicated cases.
For m~lltiple-loop systems ttre rm!lting expressions are often very valll-
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able in indicating desired gain levels in the subsidiary loops for optimum
.~alues of the C’s, that is, for minimum error.

In a later section there will be given a very simple way of determining
approximate values of the first few C.’s, at least, directly from the fre-
quency-response curves of the system.

The error coefficients can be given a still different physical significance
which is sometimes useful and of more than academic interest. Let us
suppose that a uni~step function of position is applied to a general
serve. Then

(67)

and

‘[1’’’’”1 = %)
(68)

Furthermore,

[
- dt c(t) = lim

/

t -If (P)dt c(t) = lim — (69)
o Z’+m o p+o P

We are familiar with the fact that a zero-static-error servo is charac-
terized by an M(p) that has a zero of order one at p = O; that is,

M(p) = pN(p).

Substituting in Eq. 65, we get

Cn=[$ ’N’P)IP=O

This gives immediately

and
C’o=o (as assumed)

[
c1 = ho N(p) + p ~T:

1
= lim N(p),

N(p) = ~, ‘0
P

(70)

(71)

(72)

(73)

which is precisely the expression in Eq. (69) for the integral of the error
for a step-function input. It follows that Cl or h’:’ is a good measure of
the speed of response of a servo that has an aperiodic or nearly aperiodic
response but may easily be a very poor figure of merit for a servo having
a damped oscillatory response, because a very poor system of this type
could conceivably be adjusted to give a very low C, (very high K.).
In a similar manner one can show that CZ or K~l, for a zero-static-error
and zero-velocity-error servo, is

r.
(74)
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that is, the acceleration-error constant is the reciprocal of the time
integral of the step-function error weighted by the time. Similarly c ~is
proportional to the integral of the step-function error weighted by the
square of the time and so on for the higher error coefficients. The
interpretation of the error coefficients in this manner is often instruc-
tive. Similar correlations may be derived if the input is considered as
a step function in velocity.

Most of the results of this section have been obtained in a purely
formal way, proceeding from Eq. (55), and the conscientious reader will
observe man y steps involving operations that are open to question. The
inversion of Eq. (56) in order to pass to Eq. (57), for instance, results not
only in the terms given in the latter but also in a whole series of higher-
order impulse functions (delta functions) that have been discarded.
The justification for this procedure, as well as for the validity of the
term-by-term inversion of the transform in Eq. (55), is too involved to
be presented here. The reader interested in these questions, as well as
in the general subject of the asymptotic behavior of functions and their
Laplace transforms, is referred to Part III of G. Doetsch’s excellent
bookl TheoTie und Anwendung der Laplace Transformation.

BASICDESIGN TECHNIQUES AND APPLICATION TO A SIMPLE SERVO

4.6. Introduction. -In the following sections we shall consider @
typical servo design problem and examine the various procedures $~
techniques available for its solution, attempting to emphasize t~e
advantages and limitations of the different modes of approach. 1.

e

f
j
3FIG.4.10.—Simpleservo loop.

L.-J d
I -Jan

Figure 4.10 is a block diagram of the system to be analyzed. The
error-measuring device is assumed to give a voltage proportional to the
error. The transfer function of the equalizing network is taken to be

(75)

which is the transfer function of the network shown in Fig. 4.11, where
2’ = R,C1 and a = (R, + R,)/R,. The reasons for using this so-called
“integral” type of equalization will be evident from the results of the
analyses in the following sections; a discussion of integral equalization

1G. Doetsch, Them”e und AriwenduW da Laptace Trarwforrnu.titrn,Dover Publi-
cations,New York, 1943.
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is given in Sec. 4,16. Theamplifier can becharacterized by a constant
gain G.. The motor is characterized by an inertia J~ and a viscous

~

RI

c,

0
Fm. 4,11.—Equalizingnetwork.

damping coefficient f~; its transfer func-
tion is

Km
(76)#m (~) = p(’l’mp + 1)’

where T. = Jm/j~ and K. has the dimen-
sions of angular velocity per volt. The
study of this system is important because
simtie servos of this kind are freuuentl~

used and because many more complicated systems can be approximated b~
this simple system for the purpose of studying the effect of adding integral
equ~lization.

The important physical parameters of the complete system can now
be listed:

T~ = the motor time constant,
Km = the motor gain,
G. = the amplifier gain,
T = the integral time constant,
a = the attenuation factor of the equalizer.

In a given design problem the motor characteristics are usually consid-
ered as being given, while a, T, and G. are parameters that we can vary
in any way we choose in order to improve the performance of the system.
In general any “solution” to the design problem should tell us how the
performance of the system is influenced by changes in any of the param-
eters and should provide a rational basis for selection of those parameters
whose values can be adjusted at will.

4.6. Differential-equation Analysis. —The method of direct solution
of differential equations is commonly employed in the study of most
physical systems and immediately suggests itself in connection with the
servo problem. Following the basic outline given in the first section of
this chapter, we can write for our chosen example

(77)

where

: (P) = “’(p) J
1 + Y1l(P)

‘,l(P) ‘(flU%P)(Gc)[P(T~”’+-l)] ‘p(Ti;:~%+lj(,8)

It is important to note that the product GsK~ appears in these equations
in such a way that it can immediately be identified with Kv, the velocity-
error constant. The differential equation for this system is clearly
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aTz’~”+ (az’+z’)d~”+ (l+ K*z’)@+Keo~ d~a m dp dt v

This differential equation is to be solved subject to the condition that the
system is initially at rest. The Laplace transform method of solution is
the most convenient approach, since Eq. (79) is a simple ordinary dif-
ferential equation with constant coefficients. The transform of the out-
put is

th(p). (80)JX%(t)l = ~(~mp + 1)(:;) ++17; K,(1 + ~P)

We now assume some representative or at least interesting form of
inpu’t function, the most commonly used one being a suddenly applied
displacement of velocity, as discussed in Sec. 4.2. For a suddenly applied
velocity %, Eq. (80) can be written as

K.%(1 + Tp)
(81)~[e”(f)l = pqp(Tmp + l)(aTp + 1) + K.(1 + ~P)l’

or

e.(p) =
%(1 + Z’p)

P2(::+1)($+2’2+1) ’82)

where the denominator has been factored and the parameters a, (, and
u. introdur.d. The inversion of Eq. (82) to find (?o(t) can be performed
in general by means of the inversion integral and the calculus of residues,
or it may be expanded in partial fractions, and the separate inversions
looked up in a standard table of Laplace transform pairs (see Chap. 2).’
The result is

18ss, for instance,M. F. Gardnerand J. L. Barnes,Transients in Lirwar System-s,
WiIey, New York, 1942,Table C.
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Limiting forms of this expression must be used for the cases ~ = 1 and
a=l. The errors resulting from this suddenly applied velocity are
plotted in Figs. 4.12 and 4,13 for different values of f and a. The motor
time constant, a fixed system characteristic, is used as the normalization
constant. It is necessary to select a value of the parameter a before
drawing these curves ;thefigures aredrawnforu = 10. It@illbeappar-
ent later that changes in the value of a have a direct effect on the magni-
tude of the steady-state following error but practically no effect on the
transient nature of the response.
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FIG.4.12.—Transientresponsesfor different values of ~. All curves are for a = 1.

We have not as yet defined the parameters a, c, and Q. in terms of the

parameters of the actual system, so that our results are of no practical

value as yet. For any given single set of data, of course, the system

parameters corresponding to a set of values of a, ~, and ~fi can be calcu-

lated, but it requires a considerable number of such calculations to
determine the effects of general variations in system constants. This
is an inherent difficulty of the differential equation approach--even in
this simple example it shows up quite strongly.

Since the characteristic equation is here of the third order, we can
expect to find no simple relationship between the system parameters and
the coefficients of the factored cubic in 13q. (82); we are thus led naturally
to some sort of graphic presentation of this relationship. Charts relating
the coefficients of the general cubic

(84)a@+a2z2+alz+l=0
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to the values of a, {, and U“ in the factored cubic

5+:’+’)(:’+1)=0( (85)

have been prepared in connection with this same problem, 10Z’3but their
use involves a fair amount of calculation, since the coefficients al, az,

and as are still not related in any simple way to the actual system parame-
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FIG.4.13.—Transientresponsesfor different values of a. Ml curves are for .? = 0.25.

ters. It is apparent that the only satisfactory answer is a chart that
directly relates the system parameters to a, {, and a.T~. Such a chart
can be prepared using the equations that result when coefficients of
powers of p in Eq. (81) are equated to coefficients of like powers in Eq.
(82) :

1Y. J. LIU, Servomechaniwn.s: Charts for Verifying Their Stability and for Finding
tke Roots of Thxir ThiTd and Fourth Degi-ee Characteristic Equations, privately printed
by MassachusettsInstitute of Technology, Department of Electrical Engineering,
1941.

ZAlso,L. W. Evans, Solutionof the CubicEquation and the C’Ubic Charts, privately
prints&by MassachusettsInstitute of Technology, Department of Electrical Engi-
neering,1943.

aAlso, E. Jahnke and F. Erode, Funktionentafeln(Tabfesof Function-s), Dover,
New York, 1943, pp. 21–30 of the Addenda.

Ii
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The three dimensionless parameters a, T/T~, and KmT~ represent the
actual constants of the physical system; and in order to present corre-
sponding values of a, f, and u.T~ it is convenient to assign a fixed value to
one of a, T/ T~, and K,T~ and plot the remaining two against each other.
Figure 4.14 is such a chart drawn for a = 10, in which T~/T is plotted

“’l=%bkk%

0.2
\

1A

0,

FIQ.4.14.—Designchart for single-time-lagservowithintegralequalization. Heavy
solid linesare for constantvalues of (; light solid lines are for mnstant values of w_T~;
dashed lines are for constant values of K. T~z. The entire family of curves is drawn for
a = 10.

against K. T~ and the curves are for constant values of ( and ~nTm.
Thk is, then essentially a plot of the reciprocal of the integral time
constant against the loop gain or velocity-error constant. Figure 4.15
is a similar figure drawn for a = 5.

We know from the response curves of Figs. 4.12 and 4.13 that values
of r in the range from 0.25 to 0.75 result in reasonable transient response
and that it is desirable to have as high a value of K. T~ (velocity-error
constant) as is consistent with satisfactory transient response. The
design charts then show that the integral time constant should be between
four and eight times as large as the motor time constant and that loop
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gains of the order of K~T~ = a can be used. If the integral equalizer
were not used, a maximum usable value of K, T~ would be 1 or 2; thus
the equalizer enables us to increase the velocity-error constant by roughly
the attenuation factor a of the network or possibly by as much as twice
this factor. Values of KG!&~, a dimensionless parameter proportional to

\l \m !\, I

\,

“\
\

0.4 \ \
\\ \ \ \

“\ ‘\ ““- ‘,
&glh0.3 \\’.\ I

I \“ \ [ M ~i I I
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I \ i 1
1“ iii. II I . I I

I 1 1-- -–r”––– I I I J1
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0.2 0.3 0.4 0.6 0.8 1 2 34
KvT~

a
FIG.4,15.—Design chart for single-time-lag servo with integral equalization. Heavy

solid lines are for constant values of ~; light solid lines are for constant values of unT”;
dashedlines are for constant values of K. T~z. The entire family of curves is drawn for
a=5.

the acceleration-error constant (see Sees. 4.2 and 4.4), have been plotted
on the design charts; they indicate clearly an optimum value of integral
time constant; optimum, that is, if acceleration errors are considered
important. It can be shown that such optimum adjustment corresponds
to making the parameter a equal to roughly unity.

Examination of the transient response curves show that if the system
is adjusted to ~ = 0.25 and a = 1(KvT~ = 2a), then the rise time or
buildup time of the step-function response will be about 1.5T~ sec and
the period of the oscillatory part of the response will be about 5 T~ sec.

According to Eq. (43), the cutoff frequency of this servo, considered as a
low-pass filter, is about 2/7’~ radians per second. We can conclude that,
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(as long as a is chosen greater than about 5) the maximum usable gain
for thk system is between K“T~ = a and K~T* = 2a and that a value of
T equal to approximate] y 4T~ is required for optimum operation at
these gain levels. The buildup time is not materially affected by changes
in the value of a.

The differential equation analysis’ carried out in detail yields a great
deal of information about the system characteristics; the amount of work
involved, however, is relatively large, even in the simple example that we
have selected. In a more complex case, charts displaying the effects of
varying the numerous system parameters could not be prepared without
rm unreasonable amount of effort. If a detailed transient analysis of
such a system is required, it is common practice to set up the problem on
a differential analyzer and determine a large number of solutions by
varying the system constants one at a time or (hopefully!) in appropriate
combinations. More often than not such a procedure leaves the designer
with a large amount of data that are extremely difficult to interpret in
terms of optimum performance from the system.

Fortunately, more powerful and convenient design procedures not
based on an explicit solution of the differential equations are available;
their advantages are so manifold that the differential-equation approach
is seldom used by servo engineers at the present time.

The study of simple systems from the differential-equation viewpoint,
however, is instructive, particularly to the neophyte, in demonstrating
the use of various basic methods of equalization and the effects of varying
system parametem. In this connection, charts similar to those presented
in this section can be prepared for simple servos with other kinds of
equalization. An intimate knowledge of the behavior of such systems is
useful to the designer, since so many complex systems can be approxi-
mated by these simpler systems.

4.7. Transfer-locus Analysis. The Nyquist Diagram.-The transfer-
10CUSanalysis is a study of the steady-state response of the servo system
to sinusoidal input signals. . It is common practice, for the sake of
simplicity and convenience of interpretation, to study the loop transfer
function rather than the over-all transfer function, that is, to study the
transmission of signals around the servo loop. The essential advantage
of this method arises from the familiar fact that the sinusoidal steady-
state solution of the differential equation can be written down immedi-
ately if the transfer function of the system is known.

I G. S. Brown and A. C. Hall, “Dynamic Behavior and Design of Servomechw
nisms,“ Trans. ASME, 68, 503 (1946). S. T$r.Herwald, “ Considerationsin Servo.
mechanismDesign,” Trans.AIEE, 63, 871 (1944). A. Callender,D. R. Hartree,and
A. Porter, “Time Lag in a Control System,” Trans. Roy. Sot. (London), 235A, 415
(1936),



SEC. 4.7] TRANSFER-LOCUS ANALYSIS 159

We now take up the transfer-locus analysis of the simple system shown
in Fig. 410. The transfer function defining the transmission of signals
around the servo loop is evidently given by

: (~) = P(l +K&;lT:) .~p)”

To find the sinusoidal steady-state solution we simply
Eq. (87), obtaining

K,(I + jwT)
% ‘~u) = ju(l + ju!!’~)(l + jauZ’) “

(87)

replace p by jo in

(88)

This is, in general, a complex number that can be expressed in its polar
form, that is, in terms of its magnitude and phase. A polar plot of this

90”

‘=8.“Tm=*&KJ’m = 10

Tm

4.16.—Nyquist diagram for single-time-lag servo. (a) No equalization, @),
with integral equalization.

function with the driving frequency u as a parameter is called a transfer-
10CUSplot or, more commonly, a Nyquist diagram.

Let us first consider the Nyquist diagram corresponding to the seNo
with no equalization, which is simply a plot of

(89)
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The real factor K,T~ affects only the magnitude and not the phase of
thk quantity and hence is simply a radial scale factor on the plot. We
will take Ku T~, which is proportional to the loop gain (or velocity-error
constant), equal to unity for the purpose of plotting Eq. (89). Curve A

in Fig. 4.16 is the Nyquist plot of Eq. (89). The values of ul”~ corre-
sponding to various points of the curve are labeled in the figure.

The loop phase angle at any frequency (taken as positive) diminished
by 180° is defined as the “phase margin’~ at that frequency, and the
frequency at which the curve crosses the 10./el = 1 circle is termed the
“feedback cutoff frequency.”

In this extremely simple system we have just one adjustable parameter
at our dkposal, namely, the loop gain, and we must determine what values
of gain will result in tolerable performance. This is commonly done by
rel’sting the Nyquist diagram to the over-all frequency-response curves
of the system, a process that is rather easily carried out.

It was pointed out in Sec. 42 that the over-all frequency-response

curves defined by the function ~ (ju) are similar to the frequency-

response curves of a low-pass filter and that the peak height and
corresponding frequency are useful criteria of performance. Curves of
constant value uf 10o/(l,I can be drawn on the N yquist plot in order to
determine the general nature of the over-all frequency-response curve.
These curves are drawn in Fig. 4.16 in dotted lines for various values of

00

‘=%”
It is easily shown that this family of circles is defined by the equations

M, M
Center = – M, _ ~, radius = M, _ ~. (90)

From the figure we see clearly that for K,T~ = 1 the peak height will
be approximately 1.2 and will occur at a frequency given by wT~ equals
about 0.8. Increasing the gain is equivalent to changing the radial
scale factor on the plot. One can easily determine, for instance, that
increasing K. Z’~ from 1 to 2 will increase the peak height from 1.2 to
about 1.5.

Now let us examine what happens when the integral equalizer is added

to the system. The quantity ~ (j~) is then multiplied by the factor
I

1 +j$~wTm
G(jti!!’.) = — —.

l+ja~tiT.
in
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This transfer locus of the integral network is plotted in Fig. 4.17; it is
always a semicircle, the zero frequency point being at r = 1, 0 = O and
the infinite frequency point at r = a–l, 0 = O. The parameter T/T~

determines the distribution of frequencies along the arc of the semicircle.
To combine this curve with the transfer locus .4 of Fig. 4.16, we must
first select values of a and T/T~, then “multiply” the two loci in the way
in which complex numbers are multiplied, that is, by multiplying the

90°
120”~ ..0

270°
Fm. 4.17.—Nyquistdiagramfor integralequalizer,

magnitudes of the radius vectors at a given frequency and adding their
phase angles. The curves in Fig. 4.16 show the results of such a process
when a is taken to be 10 and the curves are for various values of T/T~.

These curves are drawn with KoT_ = 10, as compared with KVT. = 1
in the case of the curve for the unequalized servo. If T/Tn = 1, we
sse that the transfer locus passes very near the critical point —1 + jO;
the seNo is decidedly unstable when KVT~ = 10. If, however, T/T~ is
increased to 8, a gain of K$T~ = 10 can be used, giving a frequency-
response peak height of less than 1:6 at oT~ equal to approximately 0.8.
The gain could be increased to 20 without causing the peak height to
grow to more than 1.8. If T/T~ is increased to 20, this same high gain
can be used, and the performance will not differ essentially from the
performance obtained with T/Tin = 8. Further analysis would show
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that T/T~ could be decreased to about 4 and that a gain of K,T~ = 20

could still be used.
It is quite clear from these curves that the phase margin at feedback

cutoff is a good criterion of stability when the transfer locus is more or
less parallel or tangent to one of the circles of constant M in the vicinity
of feedback cutoff. This condition obtains in many, if not most, actual
systems. More than 30” phase margin at feedback cutoff is usually
desirable; more than 60° will usually result in a system that is greater
than critically damped.

Assuming that K,T~ = 20 with T/T~ = 8, feedback cutoff occurs at
about uT~ = 1.3, giving a buildup time of 2.4T_ (see Sec. 4.2)—some-
what larger than the value found from t~e differential-equation analysis
in the preceding section; if T/ T~ were reduced to about 4 (we have
already mentioned that this is possible), the frequent y of feedback cutoff
would be increased, resulting in a somewhat shorter buildup time.

It is instructive to interpret the curves of Fig. 416 in terms of the
Nyquist stability criterion developed in Chap. 2. The transfer loci have
been drawn only for the range of frequencies from O to LTI; and since the
stability criterion requires the curves for the complete range of all real
frequencies, – @ to + ~, we must imagine the curves of Fig. 4.16 to be
completed by drawing in their complex conjugates, i.e., their reflections
about the real axis. We can see that no matter how high the gain is
raised, the critical point —1 + jO will never be enclosed, so that in the
mathematical sense the system never becomes unstable. This apparent
paradox and its explanation have already been discussed in Chap. 2,
and we have already seen in this section how more detailed considerations
of stability set an upper limit to the usable gain.

The Nyquist diagram is most commonly used in conjunction with
curves of constant magnitude of 100/@~lto determine parameter values
that result in a satisfactory over-all frequency response rather than for
determining stability in the absolute mathematical sense. For more
complicated systems, additional factors will appear in the expression for
00/., and these can be combined one at a time in the same way that the
two simple factors were combined in our example; thus the effects of
additional equalization or more complex motive elements are easily
studied. The economy of thought and time inherent in this approach,
as compared with the direct solution of the differential equations, is
much more striking in more complex examples where the differential-
equation method is all but unfeasible; even in our simple example, how-
ever, the transfer-locus method is much more convenient and less time-
consuming, as the reader can verify by going through the detailed
calculations involved in solving the same or a similar problem by the two
clifferent techniques. The principal advantage of the transfer-locus tech-

1

I

I
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nique is the manner in which the results of varying system parameters
can be determined.

This type of analysis has been exhaustively treated by A. C. Hall,’
who gives a detailed account of the basic philosophy of the method and
treats many different practical examples. The treatment of multiple-
100p systems by this method is somewhat involved, since the loop trans-
fer function is then no longer a product of simple factors. Several
writers have pointed out the advantages of using a diagram in which
C/OOis plotted rather than 00/c for such multiple-loop systems. Since
the general approach to the design proklem to be discussed in the follow-
ing section is ideally suited for multiple-loop systems, these inverse
Nyquist diagrams are not described here in any detail.

4.8. Attenuation-phase Analysis. —The’ (attenuation-phase” or” deci-
bel–log-frequency” type of analysis to be introduced in this section has
been found to be the most satisfactory approach to the servo design
problem and is the method that will be used’ in the later sections which
deal with the general servo design problem in detail.

The general theoretical foundations of this type of analysis are dis-
cussed in Sec. 49, and the present section is intended to give no more
than a brief introduction to the method, which, like the transfer-locus
method, is basically a study of the steady-state transmission of sinusoidal
signals around the servo loop. The real and imaginary parts of the
logarithm of the loop transfer function are plotted as functions of the
frequency, on a logarithmic frequency scale. Writing

(92)

we see that the real part is the logarithm of the magnitude of $ (jco)

and the imaginary part is simply the phase of the same function. The

quantity 20 log,O ~ ~ proportional to the real part of the above expres-
6,.

sion, is usually plotted rather than just in ‘~ and is then called the loop
.,

attenuation in decibels. It should be remarked here that the terms
“attenuation” and ‘‘ gain” are used interchangeably in this text for the
same quantity, even though the gain in decibels is the negative of the

LA. C. Hall, The Analysis and Synthesis of Linear Servomechanisms,Technology
Press,MassachusettsInstituteof Technology, May 1943. A. C. Hall, “ Application
of Circuit Theory to the Design of Servomechanisms,” J. Franklin Inst., 242, 279
(1946).

Seealso: H. Lauer,R. Lesnick,and L. E. Matson, ServomechanismFundamentals,
McGraw-Hill,New York, 1947.
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attenuation in decibels. The context in any particular instance will
prevent confusion. The significance of this seemingly trivial modification
of the usual Nyquist diagram stems from certain asymptotic properties
of the resulting curves and from certain relationships between the two
diagrams. It will be shown later that for a large class of transfer func-
tions, the so-called minimum-phase class, the attenuation characteristic
is completely determined when the phase characteristic is prescribed, and
vice versa. A knowledge of the nature of this functional relationship
between the attenuation and phase characteristics often makes it possible
to carry through a large portion of the design procedure using only the
attenuation curve, which is extremely simple to construct, even for very
complex systems.

Let us now consider the attenuation and phase diagrams for the trans-
fer function of Eq. (88). First we notice that the real part of the loga-
rithm of this expression can be written

A = 20 log,, KoT~ + 20 log,o 1(1 + jtiT)l – 20 Iog,o ljd’~[

–20 log,, 1(1 + jmT~)l – 20 Iog,o 1(1 + jacoT)l; (93)

the attenuation characteristic is the sum of the characteristics of the
individual factors of the complete expression. The first term is simply an
additive constant; we therefore take K, T~ = 1 and eliminate this term
for the time being. The attenuation characteristic corresponding to a
typical term, say A, = 20 log,, \(1 + jcoT) 1, is easily constructed. For
very low frequencies this term approaches ‘Xl loglo 1, or zero. For very
large frequencies we have

20 log,, ](1 + ju!f’)1 -20 Ioglo UT. (94)

Thus

AIwO, UT < 1,
A, =20 log QT, UT > 1. (95)

In this asymptotic relation A 1 is obviously a linear function of the loga-
rithm of the frequency and becomes zero at a frequency u = I/T. To
determine the slope of the linear plot of A 1 as a function of log10 tiT~, we

notice that if a given value of u is doubled, that is, if the frequency is
raised one octave, then A 1is increased b y 20 log10 2. Thus the slope may
be expressed as 6 db per octave. These high- and low-frequency asymp-
totes are shown in Fig. 4“18, where z = QT. The exact function 20
log,, \(1 + juT) ] is also plotted, in dashed lines, and is seen to differ
from the asymptotic curve by at most 3 db, at the corner frequency
w = l/!f’. The term 20 log,o ljtiT~} in Eq. (93) is easily seen to have an
attenuation characteristic that is simply a straight line with a slope of
6 db per octave passing through zero at the frequency u = l/1’~.

I
I

I
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If we now assume that T/T~ > 1, we can draw the asymptotic curves
for each of the terms in Eq. (93) all on one drawing and finally take the
sum of these curves to find the asymptotic attenuation characteristic
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FIG.418.-Attenuation of 1 + jz.
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. 8,

for the entire loop. This is shown in Fig. 4.19. In this and the following
figures the symbol v has been used to denote the quantity T/T~. Actu-
ally, of course, the individual curves A, B, C, D need not be drawn in
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order to draw the complete curve E once a little insight into the nature
of the process is gained.

Several important features of the over-all curve E should be noted.
(1) The final break from 6 to 12 db per octave will always occur at
uT. = 1, independent of the particular values of a > 1 and T/T~ that
are selected, as long as T/ T~ > 1. (2) It is extremely simple to observe
the changes that result when the parameters T/T_ and a are varied. The
ratio T/ T~ determines the length of the 6-db per octave stretch between
uT. = T~/T and uT~ = 1, and a determines the length of the 12-db per
octave stretch between uT~ = (a T/ T~)–l and ~ Tm = T*/ T. Finally,
a value of loop gain K~Z’~ clifferent from unity results simply in a shift of
the A = O line up or down on the plot, according to whether K,T~ is
made less than or greater than unity.

We now take up the construction of the phase characteristics. It is
evident that the complete phase angle for the loop transfer function is
equal to the sum of the phases of each of the separate factors of the
transfer function. The factor K,T~, being real, contributes nothing to
the phase, while the factor (jaT_)–l contributes –7r/2 radians or – 90°,
independent of the frequency. The phase of a typical factor (1 + jz) is
given by

\ q5= tan-’ x. (96)

This is plotted in Fig. 420. If z = UT and o = l/T, then z = 1; thus
this curve is the phase associated with the attenuation characteristic of
Fig. 4.18, the point x = 1 corresponding to the frequency tiT~ = T~/T.
We now have all the data that we need to construct the over-all loop
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FIG. 4.20.—Phase of 1 + jz,
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phase characteristic. It should be noticed that rapid changes in phase
can occur only in the vicinity of those frequencies at which the slope of
the attenuation characteristic changes and that if the attenuation
characteristic has a constant slope over any appreciable frequency range,
then the associated phase ~villbe essentially constant. This is illustrated
in Fig. 4.21, ~vhere the phases of the individual factors of the transfer
function are sketched (A, II, C, ,!)) along with their sum E. Comparing
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FIG. 4.21.—Phasecharacteristics.Curves are drawn for u = S, a = 10, K“!f’~ = 1.

SeeFig. 4.19for identificationof curves.

the over-all phase characteristic with the over-all attenuation curve of
Fig. 4.19, we see that for very low frequencies, where the slope of the
attenuation curve is constant at – 6 db per octave, the phase is essentially
constant at – 90°. As we approach the frequency of the first break
uZ’~ = (a T/ T~) ‘1, the phase begins to change rapidly and tends toward
a new constant value of —180°, associated with the long —12-db per
octave stretch of the attenuation curve. As the attenuation curve
breaks back to – 6 db per octave, the phase once again changes rapidly
back toward the – 90° value ahvays associated with a – 6-db per octave
slope. However, since the frequencies aT~ = T~/T and uT~ = 1 are
relatively close together (the 6-db per octave portion of the curve is rela-
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tively short), the phase does not reach –90° again but rather decreases
asymptotically to —180° under the influence of the break from —6 to
–12 db per octave at the frequency o!l’- = 1. It is evident from Fig.

4.21 that as long as the frequencies at which the breaks occur are fairly
well separated, the phase changes associated with the breaks are more or
less independent of one another.

The discussion in the previous section showed that the amount of
phase margin at the frequency of feedback cutoff was a good practical
criterion of system stability, at least 30° and preferably 45° or more
phase margin being required. Figure 4.21 indicates that a phase-margin
maximum occurs about midway between the two critical frequencies
uT. = T_/T and uT* = 1, in the center of the – 6-db per octave slope.
We now change the loop gain KvTm in such a way as to make feedback
cutoff occur at a frequency with the desired phase margin, that is, we
slide the A = O line down in Fig. 4.19 until it intersects the attenuation
curve at the desired cutoff frequency. The curve has been drawn for
T/T~ = 8, a = 10, and in this case we find that a loop gain of Kt,T~ = 26

db will give sufficiently stable performance (30° phase margin). A value
of Kt,Tm = 12 db will give 45” phase margin at cutoff and a more stable
system. It will be shown later that a 6-db per octave stretch of this type
must be at least 2* octaves long in order to develop sufficient phase
margin; it follows that Z’/T~ must be greater than or equal to roughly 4.
We also observe from Fig. 4“19 that the maximum usable value of KWT.

will always be very nearly equal to 2a, twice the attenuation factor of the
integral network. To arrive at an estimate of the rise time of the
transient we consider the equation

(97)

This tells us that when 100/cl is large, then 10o/0~[ is very nearly 1 and
that when 10~/cl is small, I%/0,1 is approximately equal to Itb/c 1. Thus
we can form an asymptotic curve for 100/011by taking 100/0,1 equal to 1
from zero frequency out to the frequency of feedback cutoff and equal to
I@o/c] at all higher frequencies. We then have once again a typical low-
pass filter characteristic that cuts off at 12 db per octave. According to
Eq. (43), the rise time of the step function response is T/uo, or 2.25T~ SSC,
when T/T~ = 8, a = 10, K.T. = 26 db.

The
curve.

acceleration-error constant is easily found from the attenuation
Equation (66) gives us

I

I

1 aT+T. —T 1—.
Ka K. – ~~

(98)
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and we can write, approximately,

(99)

If we extend the 12-db per octave slope in the low-frequency region until
it intersects the line of selected gain level, the frequency of intersection
will give the acceleration-error constant through the formula

(loo)

where w, is the frequency of intersection.
The reader should observe that given a certain amount of prior knowl-

edge of attenuation-phase relationships, it would not have been neces-
sary to compute the phase characteristic in detail and that most of the
design procedure is based on the attenuation characteristic, which can be
drawn in asymptotic form with no computation and negligible effort.
The more complex examples considered later in the chapter will illustrate
even more strikingly the superiority of the attenuation-phase concepts.

ATTENUATION-PHASERELATIONSHIPS
FOR SERVO TRANSFER FUNCTIONS

4.9. Attenuation-phase Relationships.-A complete mathematical
treatment of attenuation-phase relationships will not be presented here
because the detailed results of the theory are not actually used in this
book, and the theory has been exhaustively treated elsewhere.’ ‘A brief
survey of the theory is given, followed by a detailed exposition of the
practical procedures involved in the analysis of servo problems.

The transfer functions considered may represent the physical charac-
teristics of many different kinds of devices. For example, they may be
over-all loop transfer functions, subsidiary loop transfer functions, or
perhaps the transfer functions of simple passive equalizing networks.
In general, we consider the logarithms of these functions, the real part
A(w) being the attenuation, or gain, and the imaginary part I$(w) being
the phase. The general symbol Y(p) is used here to represent the
transfer function, considered as a function of the complex frequency

P = a + ju. We can divide the class of transfer functions considered
into two subclasses, depending on the location of the zeros and poles of
Y(p). If Y(p) has no poles or zeros in the right half of the pplane, then

ISee,in particular,H. W. Bode, Network Annlysis and Feedback Ampli$er Design,
VanNoetrrmd,New York, 1945;a briefreadabletreatmentis given by F. E. Terrnan,
Rodti Ew”neera’ Ha&k, McGraw-Hill, New York, 1943;L. A. MacColl, Funda-
mental Theory of Semomechanisms, Van Nostrand, New York, 1945; R. E. Graham,
“bear SCrVOne.ory,” Bell System Techntil Journaz, XXV, 616 (1946). E. B.
Ferrell,“The &rvo Problemas a TransmimionProblem,)>proc, ~RE, M, 763 (19.45).
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Y(p) is called a “minimum-phase” function. The great majority of the
functions encountered in servo theory belong to this class, which possesses
the following important property: If the attenuation A(u) is known over
the entire range of frequencies, then the phase O(U) is uniquely deter-
mined; and similarly, if o(m) is known over the entire range of frequencies,
then A(u) is uniquely determined. This property is not possessed by
functions Y(p) having poles or zeros in the right half of the p-plane, and
this case, which arises occasionally in connection with systems having
more than one feedback loop, must be treated differently.
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FIG. 4.22.—Weighting function.

The formula expressing the minimum phase associated with a given
attenuation characteristic can be gi~-en in a variety of forms, and numer-
ous other attenuation-phase relationships can be derived by function-
theory considerations. One form of the relation is

l+(q) =

where P = in co/uO. This formula places in direct evidence the important
characteristics of the attenuation-phase relationship. The phase in
radians at any frequency tiO,@(mO),is expressed in terms of the slope of
the attenuation diagram and a weighting function, where

()

dA
G=

slope of attenuation curve in decibels per octave.

The weighting function in coth 1~1/2 is plotted in Fig. 4.22; it has a total
weight, with respect to integration over p, of 1. Several important results,
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obtained in a more experimental manner in the last section, can be
derived from Eq. (101). It is clear, for instance, that the phase associ-
ated with a constant attenuation slope of 6n db per octave is just rim/2
radians. It is also clear from the form of the weighting function that the
phase must always change most rapidly in the vicinity of changes in
slope of the attenuation characteristic and that the phase at any given
frequency is influenced appreciably only by the changes in attenuation
slope near that given frequency. The actual use of Eq. (101) for com-
putational purposes would be extremely involved; and when a phase
characteristic must be computed from a given attenuation character-
istic, it is more convenient to approximate the given curve with straight-
line asymptotes and to compute the corresponding phase by means of the
procedures and charts developed by Bodel for this purpose. In servo

problems it is nearly always possible to approximate the attenuation
characteristic with sufficient accuracy, using only straight lines with
slopes that are integral multiples of 6 db p~r octave; consequently the
phase can be computed using the simplified techniques and charts pre-
sented in the following section.

Occasionally a nonminimum-phase network may be used for a passive
equalizer. The transfer function for such a network will have one or
more zeros in the right half of the p-phmc and will thus have, for instance,
a factor of the form ( —1 + Tp), \rhich has the same attenuation charac-
teristic as (1 + i“p) but a rcwrscd phtisc characteristic. Another non-
minimurn-phase situation arises in the case of an unstable subsidiary
loop, for \vhich the trtinsfcr function has a factor (T’p2 – 2(Tp + 1)-’;
this agoin has thr same attcnuatif)n characteristic as (l’”p’ + 2~Tp + 1)-’
but a reversed phase characteristic. The occurrence of these special
casrs is not trmlbkwomc in servo pI’(JbIC’IIISif the techniques of the follo\v-
ing sections are CIUP1OYC(1,since Ne h:ivc allrays sufficient kno~rledge of
the origin of the attcn~mtion characteristic to kno~v ]rhethcr or not such
nonminimum-phase structures arc present. C’lcarlyj ho~vever, if one is
simply given an attmutitkm rhamctcrkticj it cannot he assumed auto-
matically that, it is the characteristic of a minimum-phase structure, and
the phase cannot be cornputcd ~vith certainty. Obviously the attenua-

tion and phase may be computed from the transfer function.

401O. Construction and Interpretation of Attenuation and Phase
Diagrams. —l?or the construction of attenuation and phase diagrams the
feedback transfer function 00/t is exprcssml, as far as possible, as the
product or quotient of factors of the form (7’p + 1); its decibel magni-
tude 10~/c\,,~and phase angle Arg (oJE) arc then plotted on semilog
coordinates as a function of frequcmc,y, In this type of plot an asymptotic
method can be used to approximate the cllrves,

1~orh?,Op.Cd., Chap. XV.
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As an illustration of the construction of decibel-log-frequency graphs
let us take the transfer function

(102)

As @ ~ O, l@O/.Sldb~ ~ log,o K, – 20 loglo w The argument then
proceeds as in Sec. 4.8. Since doubling the frequency diminishes the
value of Ioo/cl by a factor of 2, the asymptote to the actual curve for small
values of a has a slope of – 6 db/octave [the log of 2 is 0.30103;

20(0.30103) = 6.0206 db,

which is usually approximated by 6 db]. When u >> I/T, that is,
u T >> 1, 100/cIvaries inversely as the square of the frequency. Therefore
the asymptote has a slope of – 12 db/octave. If ]@O/Clis represented by
these two asymptotes intersecting at o - 1/T, the maximum departure
from the actual curve is only 3 db and occurs at the intersection. For one
octave above or below this point the departure is 1 db.

When more time constants are present, the approximate plot is made
similarly, with a change of 6 db in its slope at each value of a for which
u times one of the time constants equals unity. The slope is decreased
for time constants in the denominator but increased for those in the
numerator. The departure from the actual curve near each slope-change
point is the same as that for Eq. (102) if the time constants are not too
close to each other.

The plot of Arg (0~/c) for Eq. (lo2) is approximated from the following:

()Asti-O, Arg $ + —900,

()
m-+~, Arg ~ + —lsOO.

()
Atw=&Arg ~ = –135°,

1

()

%0
u= —,Arg ~

2T
M —26.5° from the —900-phase asymptote,

2

()

eo ,~= —,Arg —
T

M +26. 5° from the —1800-phase asymptote.
e

For convenience, the “ decibel–log-frequency” and ‘‘ Arg–log-fre-
quency” plots are usually made on the same sheet.

In using this method of plotting transfer functions for servo design,
numerous short-cut methods can be devised.

The attenuation plot may be constructed entirely by projecting the
line at one slope to the next break point and then projecting the new
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slope to the next break point and so on. However, since the errors in
this process are cumulative, better accuracy is obtained for the asymp-
totic-attenuation plot if the value of the attenuation at each break point
in the asymptotic curve is computed directly. The following procedure
has been found useful: The decibel value is computed at the first break
point (a = 1/7’,). If lI?o/Kcl (K being the gain term) is being plotted
and the low-frequency asymptote has a slope of 6 db/octave, the required
value is – 20 logl~ (l/T,). If the asymptote preceding the next break
point (u = 1/ T2) has a slope of 6m db/octave, the decibel value at this
break point is computed by subtracting 20 loglo (Z’,/’i”,)~ from the decibel
at the previous break point. The decibel values at the other break points
are similarly computed.

A log-log duplex vector slide rule is useful for calculation of the decibel .
magnitude or phase contributed by any of the (Tp + 1)-terms and of
the departure of the asymptotic plot from the actual curve.

In calculating the magnitude -v’-, use is made of the relation
l/tanh p = ~1 + l/sinh’ p, with ~u2T2 + 1 = l/tanh ~ and

1UT . ~—.
smh ~

In detail, the procedure involves
1. Computation of l/coT.

2. Determination of g = sinh-’ (l/uT).
3. Determination of tanh p.
4. Computation of l/tanh p.
5. Determination of log (1/tanh p).
By leaving the slide exactly in the mid-position these operations are

completed by only two settings of the cursor. To illustrate the method,
let co!!’ = 0.5.

1. Set the cursor to 0.5 on the C1-scale and read the value ~ = 1.442
on the Sh2-scale. (The Shl-scale is used if COT> 1.)

2. Set the cursor to 1.442 on the Th-scale. The figure 1.12 on the
Cl-scale is the magnitude ti~l, but 0.05, the log of the
magnitude, may be read directly on the L-scale by reading thk
linear scale as if the zero gradation were at its right-hand end and
the one gradation at the left end. Mental multiplication by 20
gives 1 db for the contribution of thk time constant.

Since the asymptotic plot uses Odb/octave for a (Tp + I)-term when
ul’ < 1, the magnitude of 1 db obtained in the example is also that of the
departure of the asymptotic plot from the actual curve for UT = 0.5;
and since the departures are symmetrical about UT = 1, this is also the
departure at OT = 2.
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The phase angle is obtained for UT < 1 by setting the cursor to UT on
the C-scale and readkg the angle on the T-scale; for UT > 1 it is obtained
by setting the cursor to UT on the CI-scale and reading the angle on the
T-scale, but using the complement, which is usually given in red num-
bers on this scale. The ST-scale is used for aT > 10 or <0.1.

When two time constants of the transfer function are close together
and one is in the numerator and the other in the denominator, the maxi-
mum departure of the approximate plot from the actual curve is less
than the 3 db resulting from one time constant alone. Figure 4.23 shows
both plots for TI = 2T,.

I?IG.4.23.–

At the

+2

+1
o

-1

-2

-3 — —
I

-4
1, I

-5
I I 2.0db

-6
0db

I 0.7db 02db
-7 I

I

-8
L L _!_
8T1 4TI 2T, $k,~ * + ;

u,
.ictud and approximate plots of 1[2’m + 1)1(2’LP + 1)1 with T, = 2Tz.

geometric mean (w~ = l/~ Z’IZ’Z) the departure is always

zero. If 2’, is the larger time constant, a maximum departure of

‘“’o+([’+(wodb
occurs both at u = 1/1’1 and at u = l/T2. The phase angle is zero

for small CO,increasing to a maximum of –ir,’2 + 2 tan-’ V“T,/ T, at the
geometric mean ( TI being the larger time constant) and then decreasing
to zero for higher frequencies.

When two time constants are close together and both are either in the
numerator or in the denominator of the transfer function, the maximum
departure of the approximate plot from the actual curve is greater than
the 3 db resulting from one time constant alone. If the two time con-

stants are equal, the maximum departure is 6 db at u = 1/T. If there
are n eq”ual time constants, the maximum departure is 3n db at u = I/T.
For two time constants, with l’, = 2T2, the maximum departure is 4 db.
This is shown in Fig. 4.24.
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If !l’’, isthelargertime constant, amaximum departureof

occurs both at u = 1/7’1 and at o = Ii’!l”j. .lt the geometric mean
(u* = 1/ @,l”J, the phtise angle is – 90°; the departure of the approxi-
mate curve rcachcs a local minimum and is 20 log [1 + (TLJ~Jl db.

The phase-angle asymptotcw arc 0° for low fmqucncics and t 180° at
high frequencies for the time constants in the numerator or denominator

‘z~– 1.-.. l.. .! I T~
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FIG, 4.24.—.kctual and approximate plots of 11/[(T,P + l)(T~P+ 1)11with T, = 2Tz.

respectively. The dotted projection of the O- and the 12-db asymptotes
in Fig. 4.24 indicates that the region above u = 1/ Tz may be approxi-
mated by a 12-db break at u = l/@z.

When a quadratic factor having a pair of conjugate complex roots
appears in the transfer function, the shape of the actual curve is that
shown in Fig. 4.8. This plot is for the dimensionless quadratic factor

1
T’p’ + 2~Tp + 1“
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Only the cases where ~ <1 need be considered, since when ( = 1 the
denominator = ( Tp + 1)‘ and, when ~ > 1 it may be factored into

(TIP + l)(TzP + 1).
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FIQ.4,25.—Departures of the asymptotes from the actual curves, for the quadratic factor
l/(z’2p~ + z~r’p + 1).

The asymptotic plot is constmcted as for ~ = 1, using a 12-db change

I

I

I

Iin slope at w = 1/T, The phase-angle asymptotes are 0° for low fre-

1
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quencies and – lSOOfor high frequencies with – 90° at u = l/T. The
departures of the asymptotes from the actual curve both for attenuation
and phase are given on Fig. 4.25. When the quadratic factor occurs in
the numerator of the transfer function, the signs of the departures on
thk plot are reversed. The departure curves are symmetrical about
u = l/T. For the frequencies not covered by the plot, below UT = 0.1

and above UT = 10, the phase-angle departure may be computed very
closely by using a change of a factor of 2 for each change of one octave in
frequency.

When nonminimum-phase terms such as (Tp – 1) or

(T’p’ – 2fTp + 1)

(resulting, for example, from an unstable internal loop) appear in the
transfer function, the approximate attenuation plot is constructed in
the same way as for (TP + 1) or (Tzpz + 2(TP + 1), and the departure
from the actual curve is also the same. The associated phase angle is,
however, not the same as for the minimum-phase terms. (The actual
curves can, of course, always be computed directly.) Since these factors
are seldom encountered, they are neglected in this discussion.

For construction of the actual curve from the asymptote lines, it is
convenient to use the following relations that hold true for all of the
factors considered in this section.

1. For both phase angle and attenuation the departure contributed by
a single time constant or by a quadratic factor is symmetrical
about u = 1/T and that from two time constants close together is
symmetrkal about ~ = 1/ V’TITZ but may be treated as two sepa-
rate time constants if desired.

2. The phase-angle departure decreases by a factor of approximately
2 for each octave along the &scale in the direction away from the
maximum departure point. From the data given in the previous
discussions it is seen that this approximation does not hold in the
region close to the maximum departure point.

3. The attenuation departure decreases by a factor of approximately
4 for each octave along the u-scale in the direction away from the
maximum departure point. Since the attenuation departure
decreases at a more rapid rate, this approximation may be used
closer to the maximum departure point than that for phase but it is
not satisfactory less than 1 octave from this point or 2 octaves if
more accuracy is required.

To illustrate an approximate method for computing total phase
angles, let the equation for the phase angle be
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This may be approximated by

Arg~= ~—n~+u
~

Tl+k; –:
z

1
Z,>

(104)
u

h

where
2 z

1’1 includes only the time constants for which til” < 1, ~
T,

1 h
those with WT >1, and k is the number of those in ~1/Tk. For UT = 0.5 or
2, the error is about 2°; and for aT = 0.25 or4j the error isabout0.4°. The
maximum error is 12.4” for UT = 1. The terms for which 0.5 < COT< 2

would ordinarily be handled separately by more accurate methods.
A pair of dividers maybe used to facilitate the calculation of the phase-

angle and attenuation departure for any frequency, using the asymptotic
attenuation plot. Suppose that the attenuation plot consists of 6-db
attenuation to w = l/T1, 12 db to o = l/TZ, and 2+ db for the higher fre-
quencies and that the phase angle is desired at a certain frequency u,,
lying between a = l/Tl and u = 1/ T,. The dividers are set to the
distance along the u-axis between 1/T, and a=. Then one point of the
divider is placed on 1 on the co-scale, and the value of wZT1 is read where
the other point on the divider lies on the o-scale, WT being greater than 1
when 1/T is less than ~. and less than 1 when l/T is greater than OJZ.
From the value of CJZ7’the phase angle or attenuation departure may then
be computed by the methods previously suggested. The same procedure
may be used with all the time constants but would not be necessary with
those for which l/T differs by several octaves from a=, since their corl-
tribution is close to the asymptotic value. If the double time constant
T2 in the example is due to a quadratic factor, the angle is obtained by use
of Fig. 4.25. The total phase angle is the sum of the angles for the terms
in the numerator minus the sum for the denominator terms, with !30n0
for p“.

The attenuation diagram for a transfer function may be constructed
before determination of the value of the gain term K associated with it.
Frequently I&JKe I is plotted. At very low frequencies the expression
reduces to lpml where n is a positive or negative integer. Zero db is
located on the scale at the point where the low-frequency asymptote
crosses u = 1 on the frequency scale.

The case where n = – 1 is frequently encountered. In this case K
is the velocity-error coefficient Ku, which may be read off the plot in two
ways. On the attenuation diagram the line representing a unit value of
10o/cl is usually located for optimum phase-angle conditions. Its ;mi-
tion on the decibel scale of the I@O/KCI plot gives the decibel value of
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Ko for the gain setting chosen. The value of u at which the projection of

the 6-db/octave low-frequency asymptote crosses the unit line is the value
of Kv.

When the low-frequency asymptote has a slope of – 12 db/octave,
the intersection of its projection with the unit line in the plot of 180/Kcl

occurs at u. = ~=, where K. is the acceleration-error coefficient. If
a 6-db/octave low-frequency asymptote is followed by a long 12-db/
octave section due to a (Z’IP + I)-term in the denominator (K.Z’I >> 1),
the projection of the 12-db section maybe used in the same way to obtain
K. = u:. Under the same conditions K. = K,/Z’l.

The error c(t) for an input O,(t) can be obtained with sufficient accu-
racy from the equation

(105)

when the frequency components of the input are low enough so that the
higher-order terms are negligible. This is usually the case, for example,
in a servo loop used for automatic tracking of an airplane.

4.11. Decibel–phase-angle Diagrams and Frequency-response Char-
acteristics.-This section cent sins a discussion of methods that facilitate
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FICA4.26.—Constant-ampli fication and phase-angle contours on the loop-gain phase-angle
diagram and illustrative plots of Y’,,, 1/ Y., and l/Yb.
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the determination of control-system constants compatible with good
frequency-response characteristics. By means of a study of the transfer
function relating the output 00 to the input 0,, we shall see how to adjust
the servo parameters so that the ratio ikf = 1.90/0,[has a limited departure
from the ideal Ioo/01I = 1.0 over a suitable bandwidth of operation,
To do thk it is convenient to plot both M-contours and the loop transfer
function /30/e on the same diagram. The contours are analogous to

the M-circles in the complex plane of the transfer-locus plots.
If 00/8, = Y, and 0~/c = Y,,, then

Y1l
l“, = —

1 + Y1l”
(106)

Contours of constant M = IYll in decibels and contours of constant

# = Arg (Y1) in degrees are plotted on Fig. 426,’ against IYlll,b on the
vertical axis (loop gain in decibels), and Arg ( 1“1,) on the horizontal axis
(angle in degrees). Since these plots repeat for each successive 360°
section of Arg ( Yll) and are symmetrical about the middle of each sec-
tion it is possible to use a larger and more accurate plot showing only a
180° region of Arg (Y,,), as in Fig. 4.27.

For convenience the angle is also indicated on both figures in terms of
the degrees departure from – 180° and labeled “phase margin, ” The
equations for the contours are

and

IY,lI,,. = 20 log,,
[

sin (@ – *)

1sin ~ ‘
(107/))

where @ = Arg Yil, ~ = Arg Y1.
On Fig. 427 the M-contours are given from +12 to – 24 db. Ilelo\v

–24 db, since IY,,] << I, Eq. (106) yields IY,l = IYlll. At the same time
Arg (Y,) = Arg (Y,,) also; the Arg ( Y,)-contours asymptotically
approach the Arg ( Y,,) -lines and are not separately labeled, except those
for –5° and –2”. As Y,l increasw, YI + 1, IYII ~ O db, and Arg
(Y,) + OO.

For each contour for M > 1 there are two values,

lY,,ldb = –20 log,, (1 + M-’),

where the phase margin is zero. When IY,,l,, = – 10 log,, (1 – M-2),
the phase margin reaches a maximum and is COS–l~1 – 1}1-2. (In

—.—

the above formulas the numerical value of M is used rather than the

1The examplesY*, Ya, and Y’,, arc discuswxilater in this section.
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decibel value.) For the +contours the highest value of IY,,l is reached
where the phase margin is equal to 90° + + f rnr and in decibels equals
20 loglo n/sin $1.

N I II
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‘IO. 4.27.—Constant–phase-angle and constant-amplification contours on the decibel–ph
angle loop diagram.

nse-

It is obviously possible to transfer the M-contours and the #-contours
from this decibel–phase-angle diagram to the type of decibel–log-fre-
quency graph discussed in Sec. 410. Then, after a study of the manner
in which the attenuation curve crosses the M-contours, it is possible to
alter the gain and, if necessary, the shape of the attenllation plot, to
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obtain a satisfactory frequency-response characteristic. Since a large
number of M-curves must be plotted, it is easier (if the designer has
available enlarged copies of Fig. 4.27) to plot the transfer locus of Yll
on this decibel–phase-angle diagram, by use of data from the attenuation
and phase diagram. This Y,, plot should, in general, remain away from
the O-db and O-phase-margin point and should not cross over the M-con-
tour that corresponds to the quality of performance that can be tolerated.
A change of gain moves the Y,l plot vertically on this diagram. If
this transfer function has a phase margin that is very large at low fre-
quencies and decreases continually with frequency increase, the gain may
be increased to the value where the plot on this diagram is tangent to
the M-contour representing the tolerable performance.

Frequently the transfer function has a maximum phase margin at a
frequency other than zero. It is customary to design so that the gain
that is used places this in the region where the plot crosses the larger
M-contours. The lowest peak amplitude in IY,l is obtained by locating
the maximum phase-margin point on the Yl 1 plot tangent to an M-con-
tour near the maximum phase-margin point on the M-contour. If
the Yll plot on Fig. 4.27, when adjusted in this way, passes between two
of the M-contours that are plotted, interpolation may be used with due
consideration of the fact that the maximum phase-angle point on an
M-curve is higher in decibels than that for the next lower value M-curve.

With the best gain adjustment for a given maximum phase-margin,
the peak height of If3,/011is obviously the value of the .If-contour that is
tangent to the maximum phase-margin line, provided that the curvature
of the YII plot does not exceed the curvature of the M-contour. The
numerical value of the peak amplification is then

M = (1 – Cos’ f$)-~~, (108)

The proper gain adjustment may be determined by setting the Y,l gain
at the maximum phase-margin point equal to

\Y,,\db= –lo log,, (1 – ,1P) = –lo log,, ((!0s’ 0), (109)

If the Arg ( Yl,) decreases in phase margin much more rapidly on one
side of the maximum than on the other and if large gain changes in the
loop are expected, a gain should be used that differs from the adjustment
mentioned above in that it provides equal performance (that is, the same
maximum M is reached) at both extremes of the gain variation.

In order to illustrate the details of these methods and interpretation
of the results, two examples \\Tillbe given, using the loop transfer functions

(1 Oa)
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and
~, = K(z’lp + 1)

11 p’(z’,p + l)”
(nob)

with TI = i$j sec and T? = ~]v sec.
The attenuation and phase diagrams for these transfer functions are

given in Fig. 4.28. The asymptotes from which the actual attenuation
curves were plotted by the departure method (see Sec. 4.10) are shown
dotted. The curve for M = +3 db for Y,, [that is, plotted against Arg
(Y,,)] illustrates the use of these curves on this type of diagram. Ithas
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FIG.4.28.—~ttenuationandPhasediagramfor Y,, and Y’~,.

been found convenient to use the same linear distance for a degree of
angle on this attenuation and phase diagram as on the decibel–phase-
angle diagram of Fig. 4.27. A pair of dividers can then be used in trans-
ferring either M-curves to the decibel–log-frequency diagram or a transfer
locus to the decibel–phase-angle diagram. In either ease the dividers
are set to the distance corresponding to the phase margin at u for a given
value of decibels on the attenuation diagram and then used to mark off
that distance along the corresponding decibel line on the decibel–phase-
angle diagram.
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Figure 4.29 shows plots of Y,l and Y~l on the decibel–phase-angle
diagram. The~-parameter values aremarked along these plots.

The decibel scale on the attenuation plot corresponds to a correct
gain setting for Yllbutis not correct for }’~l. Athirdcurve shows thata
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FIG. 4.29.—Illustrative plots of Ylland Y’],.

gain lowered by slightly over 8 db is the best adjustment and gives a

peak of slightly over 6 db.
The plot for Y{l actually crosses the – 180° phase-angle line shown on

Fig. 4.26. On Fig. 4.29 it is shown by reflecting the curve at

Arg (Yj,) = – 180°
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and plotting back across the same set of contours, with – 170° for – 190°,
– 1500 for – 210°, and so on. The phase margin is then the negative of
that read on the diagram, but the decibel scale applies unchanged.

The plots on the decibel–phase-angle diagram approach an asymptote
of an integral multiple of 90° for both low and high decibel values. The
plot of Y~, approaches – 180° at high decibel values and – 270° at low
decibel values. In constructing the plot, use may be made of the
approximate rate of approach, which is such that the departure from a
90n0 asymptote changes by a factor of 2 for a change of 6n db.

It is a general rule that a fairly long 6-db/octave section between two
long 12-db/octave sections on the attenuation plot will provide a region
of positive phase margin that varies in extent directly with the length of
the &db/octave section. In the case of Y,, this section is about 15 db
long; best servo performance results when the unity gain line crosses the
6-db/octave section about a third of its length from its high-frequency
end. Since this type of plot is frequently obtained from lead or derivative
equalization, a further discussion of it is given in Sec. 415, where Table
41 gives the maximum phase-angle contribution toward positive phase
margin for various lengths of the 6-db/octave section.

When the 6-db/octave section is followed by an 18-db/octave section,
the phase margin is less than with the 12-clb/octave section, and the gain
must be lowered, as is illustrated in the case of Y~l. If desired, the values
of M from the diagram can be plotted against o, as is done in Sec. 415,
but usually the shape of this plot can be seen with sufficient detail
directly from the decibel–phase-angle diagram. With a knowledge from
past experience of the attenuation and form of phase diagram required
for satisfactory performance, it is possible to omit also the decibel–phase-
angle plot in the early design stages. This plot is generally made only
after the gain has been determined roughly by inspection of the attenu~
tlon and phase diagram.

The decibel–phase-angle diagram may be used for functions other
than those of the type of Eq. (106) by plotting and/or reading reciprocal
values. As examples, we may take

(111)

or

(112)
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The reciprocal functions are handled by changing the signs of both the
decibel and phase angle of the function or changing the signs (on the
decibel-phase-angle diagram) of the scales that apply. On Fig. 426
the plot of 1/Y. represents this quantity with the signs cm the loop-gain
and phase-angle scales as labeled. If the signs of these two scales are
reversed, the plot is that for Y.. To read 1 + Yo from the~- and #-con-
tours, the signs on the scales must be reversed.

It is of interest to study the case where the plot on the decibel–phase-
margin diagram passes close to or through a O-db and O-phase-margin
point. The relation of Eq. (112) is used as an example, with the plots of

– 270°

-180° 0

-90°
FIG.430.—Nyquistdiagramfor Y. and Yb.

l/Ya and 1/ yb on Fig. 4.26 rep-
resenting a transfer locus for two
different gain adjustments.
With IYal increasing, Arg (1 + Ya)
changes rapidly from —270° to
– 90° and, if the gain of Ya is r~
duced by 1 db, will make the
change instantaneously, since the
new plot passes through the – 180°
phase angle and O-db point. This
is seen to be the actual case by in-
spection of Fig. 4.30. Further re-
duction of the gain by 1 db leads
to the plot of l/Yb in ~lg. 426.
Here Arg (1 + Yb) appears to

jump from – 360° to 0° at the O-phase-margin point. This does not
actually happen, as may be seen from Fig. 4.30.

4.12. Multiple-loop Systems.—The design of multiple-loop systems
is a very important topic, and a later section will carry through a detailed
design of an actual system, showing the advantages of equalization by
means of subsidiary loops. In this section we shall consider a simple
double-loop system in order to introduce the techniques that will be
needed in a later analysis and in order to illustrate further the ideas
developed in the preceding sections. The equations for a general two-
loop system are given in Sec. 41, Eqs. (13) to (15), and the schematic
diagram is given in Fig. 4“2. As a simple example let us take

KVT

‘$’ = Tp(z’p +T)

and

‘2’= (Tp + l;~;o!;;p + 1)”

(113)

(114)

The transfer function of the principal loop when the subsidiary loop is
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open, Y~l, represents asimple amplifier and motor combination, and the
transfer function of the subsidiary loop represents a tachometer feedback
circuit with a rather complex equalizing network. The physical realiza-
tion of this network (w-hich, incidentally, would require active imped-
ances) is not discussed here, since it would take us too far afield from
the purposes of the present discussion. The curves labeled .4 in Fig.
4.31a and b are the asymptotic and actual attenuation characteristics
corresponding to Y~l, drawn with KOT = 1. This simple characteristic
falls at – 6 db/octave from low frequencies up to UT = 1 and then cuts
off asymptotically to —12 db/octave. The phase of this function is
not plotted but is clearly asymptotic to —90° at low frequencies and
changes rapidly in the vicinity of WT = 1 to become asymptotic to
– 180° at high frequencies.

The attenuation characteristic for the subsidiary-loop transfer func-
tion is proportional to T3p3 at low frequencies and hence rises at 18
db/octave toward wT = 1. At high frequencies Y,z cuts off at a rate
of —6 db/octave, the asymptote starting at UT = 4. This curve and
also the actual attenuation curve, easily plotted from the asymptotic
characteristics by the methods given in Sec. 4.10, are labeled B in Fig.
4.31a and b. The phase of Y,,, which again is easily computed using
the methods already referred to, is labeled C in the same figure. The
subsidiary-loop transmission characteristics, we see, are those of a typical
bandpass filter, which, for KZZ = 1, has asymptotically unity gain in the
pass band that extends from WT = 1 to UT = 4.

We must now determine what values of subsidiary-loop gain K,, will
result in a complete system that is suitably stable. The equation

(115)

tells us that we are interested in the function 1 + YZ1. The behavior of
this function is most easily investigated by replotting the attenuation and
phase of I’,, on a gain–phase-angle diagram as described in Sec. 411.
It was sho\vn that by plotting a function l/F on the special coordinate
system shown in Fig. 4.26, the attenuation and phase of 1/(1 + F) are
immediately determined. In Fig. 4.32 the reciprocal of Y,, has been
plotted on a decibel–phase-angle diagram by reading off corresponding
values of attenuation and phase from the YZZcurves in Figs. 4.31a and b

and reversing their signs. The grid in Fig. 4.32 has been reflected about
both the 0° and – 180° phase-angle lines in order to make the single-
section grid serve in place of an extended diagram of the kind shown in
Fig. 4.26. The upper curve in Fig. 432 is for KZZ = 11 db, while the
lower curve is for K22 = 31 db, a 20-db increase in loop gain as compared
with the upper curve. The two curves are, of course, identical in shape.
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As mentioned in Sec. 4.11, caution must be exercised when reading values
of the magnitude and phase of (1 + Y22)–I from the labeled curves in
any such plot in which the extreme phase change in Y22 is greater than
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FIG.4.32,—Gain—phase-angle diagram for subsidiary looP.

180°. ‘rhe observation that the phase of 1 + YZZ must be continuous
as long as 1 + YZZis continuous is usually sufficient to resolve any ques-
tion as to what phase should be assigned any given value of 1 + YZZ. A
crude sketch of the N’yquist diagram for YZZcan always be made with no
difficulty, either lJY inspection of Y12 itself or from the }’ZZ curves of
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Fig. 4“31a and b; such a diagram will always show clearly the behavior of
the phase of 1 + Y2z. The Nyquist diagram for Y*Z, drawn for KZZ = 11
db, is given in Fig. 4.33. Let us now consider the asymptotic behavior
of 1 + Y22 when the gain K22 is set at a level of 11 db. When Yjz is
small compared with 1, then 1 + YZZ is essentially unity; when YZZis
large, 1 + Y2Z is essentially just Yjz. These considerations lead us to
the asymptotic curve for 1 + Yz2 which is labeled D in Fig. 4.31a and b.
The actual attenuation characteristic can be read directly from the upper

FIG. 4:33.-Nyquist plot for subsidiary loop, K,, = 11 db.

curve of Fig. 4.32 and is plotted as Curve E in Fig. 4.3 la. The phase
corresponding to the asymptotic attenuation curve D is the dashed
curve F, while the actual phase, corresponding to E (taken from Fig.
432), is the solid curve G. We notice, first, that the asymptotic and
actual attenuation curves differ quite considerably from each other;
the phase characteristics also differ, but not as markedly as the attenu-
ation characteristics. It \vill be seen later that use of the asymptotic
attenuation curve for 1 + Y2Z and the corresponding phase in place of
the actual characteristic would not appreciably affect the final results of
the analysis.

Inspection of the form of Yza shows that it has no poles in the right
half of the p-plane, and, therefore, neither does 1 + Yzt. Application of
the usual N-yquist test to the transfer locus of Fig. 4.33 then shows that
1 + Y,l has no zeros or poles in the right half plane; we conclude that
the subsidiary loop is stable and, furthermore, that the usllal simple form
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of the Nyquist criterion will suffice to test the
system.

191

stability of the over-all

From Eq. (1 15) we see that the attenuation characteristic for the over-
all loop transfer function Y1l is found simply by subtracting the attenu-
ation (in decibels) and phase of 1 + Y!Z from the attenuation and phase
of Y~l, The results of this procedure are shown in Fig. 4.34, where the
Curves A are the asymptotic and actual characteristics for the case
K,, = 11 db, KtZ’ = O db. The actual characteristic was computed
using the Curve E from Fig. 4.3 la, not directly from the asymptote,
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FIG.4.34.—Over-allphaseandattenuationcharacteristicsfor casesof stableandunstable

subsidiaryloops.

although the latter procedure would be satisfactory in this particular
case. The phase of Yll is given as Curve B in Fig. 4.34, once again com-
puted from the curves of Fig. 4.31cc, although a direct computation
from the attenuation asymptote would be permissible. If such a calcu-
lation were carried out, we would find that the phase-angle maximum
that occurs near UT = 10 on Curve B would be shifted to u!l’ = 8
and would be about – 132° instead of – 145°. It will be seen that this
change would have only a slight effect on the value of loop gain Km that
is to be selected. Examination of the over-all characteristics shows that
if we select K,T equal to 44 db, then feedback cutoff (the point at which
the attenuation characteristic crosses the O-db line) will occur approxi-
mately in the center of a —6-db/octave slope and near the phase-angle
maximum of – 145°) corresponding to a phase margin of +45°. Accord-
ing to the discussion given in the preceding section this represents a
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satisfactory adjustment of gain, and we see that we can obtain a dimen-
sionless velocity-error constant (K~Z’) of 44 db, or 158, a great improve-
ment over the value of 1 or 2 obtainable with the simple unequalized
single-loop system. A good approximation to the speed of response is
easily obtained by forming
%/$,. From the equation

the asymptotic curve for the magnitude of

00—

(116)

it is seen that when @o/e is large, the magnitude of %/(?r is simply 1, or

O db, and when L%/c is small, the magnitude of 00/81 is very nearly just

the magnitude of 00/c; thus the desired asymptote for the magnitude of

0~/0~ is flat (zero slope) from zero frequency out to the frequency of feed-

back cutoff ancl is identical with the asymptote of RO/C at all higher fre-

quencies. Having set ~u!i” = 4+ clbj we find that the – 12-db/octave
cutoff asymptote of the OCI/@lcharacteristic intersects the O-db line at
tJCT = 13. According to 12q. (43), Sec. 42, the buildup time is given
closely by

1
‘*=m.=:=iw (117)

In the same manner the buildup time of the unequalized single-loop
system is found to be ,b = rZ’. Thus we have materially improved the
speed of response of the system by addition of the subsidiary loop.

.4 rough sketch of the Nyquist diagram of the over-all system is
easily drawn from Fig. 431 and is shown in Fig. 4.35a. If this curve
is imagined to be completed for the complete range of real frequencies,
— co to + co, by adding the complex conjugate of the curve shown,
the usual NTyquist test will show that 1 + YII has no zeros in the right
half plane; in view of our earlier discussion, this establishes the stability
of the over-all system. This drawing is given here principally for use
in a later discussion. If a detailed picture of the frequency response
of the system were desired, we could plot the data of Fig. 4.34 on a
gain–phase-angle diagram. This is not actually necessary, however,
since we have already obtained the asymptotic 00/Or curves, and we
know that with the system adjusted to give a 45° phase margin in the
vicinity of feedback cutoff, the resonance curve will have a peak of
certainly not more than 6 db.

We now consider the effects on the over-all system of changes in value
of the subsidiary loop gain KZZ. Referring to Fig. 4.32, we see that
increasing KZZ over 11 db simply slides the upper curve down on the
diagram. In particular, if KZZ is increased to 21 db, the curve passes
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through the singular point of the diagram, corresponding to an infinite
attenuation value of I + Y,,. This ~ituation corresponds to increasing
the radial scale factor in Fig. 4.33 until the transfer locus passes exactly
through the critical point – 1 + jO. If XZZ is increased still more, say

to 31 db, we arrive at the lower curve in Fig. 432, and we find the
behavior of 1 + Y~~for this case in the same way that we determined the
behavior of 1 + Y,, with K,, = 11 db. The solid curve D in Fig.
431b is the asymptotic behavior of the attenuation of 1 + Y,Z with
K,, = 31 db, and the dashed cur\-e E is the actual attenuation ehar-

I Y],- plane

~IG. ‘i.35a.-Ovrr-all Nyquist diagram for FIG.4.35h.—Over-all Nyqui.st diagram for
case of a stable subsidiary loop. case of an unstable subsidiary loop.

acteristic. The actual phase characteristic is shown as Curve F; it
was plotted directly from Fig. 4.32. We notice immediately that the
increase of KZZfrom 11 to 31 db has radically changed the behavior of the
phase characteristic while the behavior of the attenuation characteristic
is relatively unchanged. The phase characteristic is quite evidently no
longer the minimum phase shift associated with the given attenuation
characteristic. This situation is further clarified by consideration of the
Nyquist diagram of Y22 (Fig. 4.33). The diagram as drawn is for
K2* = 11 db; by allowing the tip of the vector 1 + Yaz, drawn from the
point – 1 + jO to the curve, to traverse the curve as o varies from O to
co, we easily verify the general behavior of the phase characteristic G
in Fig. 4.31a. Increasing KZZ to 31 db changes the scale factor in Fig.
4.33 so that the critical point – 1 + jO is enclosed by the transfer locus,
we see that the behavior of the phase of the vector 1 + Yza is indeed
changed and is as given by Curve F in Fig. 4.31b. We now apply the
Nyquist stability criterion to this subsidiary loop. We easily see that
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the function 1 + Y2Zhas no poles in the right half plane. The curve of
Fig. 433 (with the changed radial scale factor) is completed by adding the
complex conjugate curve, corresponding to frequencies from — ~ to O,
and the Nyquist test is applied. The vector 1 + Y2Z undergoes two
complete revolutions in the clockwise sense as the tip of the vector traces
the curve from a = – cc to ~ = + cc ; we conclude that 1 + YZZhas two
zeros in the right half of the p-plane, or, in other words, that the sub-
sidiary loop is unstable. This brings out clearly the nonminimum-phase
character of 1 + YZZwhen KZZis large and shows why its phase character-
istic is so radically altered when KZZ is increased.

ATOWlet us investigate what happens to the over-all system when the
gain of the subsidiary loop is increased enough to make it unstable. At
first sight, at least, it appears intuitively obvious that the complete
system will become unstable, but closer analysis will show that this is
another of many situations in which intuition fails one. The attenua-
tion and phase functions for the over-all systems are obtained from the
curves of Fig. 4.31 b in the same way as in the earlier case and are shown in
Fig. 4.34, C designating the attenuation curves and D the phase curve.
The phase-shift curve has been reflected about the – 280” line, since the
phase shift exceeds – 450° at low frequencies and is asymptotic to –4500

at extremely low frequencies. Selecting a value of Km equal to 86 db,
we see that the phase shift at feedback cutoff will be —130°, or the phase
margin will be 50°. So far, we apparently have a satisfactory system.
Now let us examine the h-yquist diagram, a rough sketch of which is
given in Fig. 135b. Again, ~ve must imagine this diagram to be com-
pleted by adding the complex conjugate curve and a large semicircle in
the right half plane joining the two zero frequency portions of the curve.
Application of the Nyquist test shows that the vector 1 + Y,, undergoes
two complete revolutions in the counterclockwise sense as the entire
curve is traversed. Thus, the number of poles of 1 + Yll in the right
half plane exceeds the number of zeros in that region by two. Since

1+ Y,l =1+*2 (118)

and an earlier Nyquist test of the subsidiary loop has disclosed two
zeros of 1 + Y~Zin the right half plane, we see that 1 + Yl: has two poles
in this region; it follows that 1 + Yll has no zeros in the critical region
and that the over-all system is stable. The selected gain level of 86 db
gives a velocit y-error constant of approximate y 20,000 T-’ and a buildup
time of 7~ = (7r/140) T, representing substantial improvements in system
performance.

The reader should appreciate that a designer with a certain back-
ground of experience with these methods could carry through the above
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design procedure almost completely, using only the asymptotic attenu-
ation characteristics that can be const rutted in a matter of minutes.
The detailed curves have been presented in an effort to supply the reader
with some of the requisite insight into the design procedure.

4.13. Other Types of Transfer Loci. —0ccasionally there arise special
problems in servo design that are best treated by procedures other than
those already presented. The vast majority of problems, however, are
readily handled using the “standard” techniques. The ingenious
designer will continue to develop new procedures ad infinitum to suit his
own out-of-the-ordinary problems, and it would be futile to attempt to
give any comprehensive discussion here of all the special methods that
have been devised. A few, however, are perhaps worth mentioning.

Several writers’ have proposed the use of the reciprocal of the usual
Nyquist diagram for the treatment of multiple-loop systems and systems
in which there are elements in the feedback path or paths such that a
true error signal does not actually exist in the systcm. The advantage
of this reciprocal diagram in discussing multiple-loop systems is readily
appreciated by writing the equation for c/@o for a double-loop system.
Using the notation of Sec. 41, we have

(119)

Thus the c/00 diagram can be constructed by a simple vector addition of
two preliminary diagrams rather than by a process of ‘( multiplying”
two diagrams together, as with the usual Xyquist diagram. The inter-
ested reader will find ample discussion of these ideas in the references
already cited.

The drawing of Nyquist diagrams is often complicated by the extreme
range of values of the radial coordinate that must be plotted. The
example in the previous section serves as a good illustration of this dif-
ficulty. Referring to Fig. 435b, a simple calculation will show that if
the sketch were actually drawn to scale, the following values of radius
would have to be plotted:

At the point A, r = approximately 100.
At the point B, r = approximately 5000.
At the point C, r = approximately 115,000.
At the point D, r = approximately 150,000.
At feedback cutoff, r = 1.

The obvious difficulty is usually surmounted by plotting various portions
of the curve with clifferent scale factors. This is a satisfactory solution,

1 H. T. Marcy, “ Parallel Circuits in Servomechanisms,” Trans. A IEE, 66, 521
(1946), H. Harris, Jr., “The Frequency Response of Automatic Control Systems,”
Trans. AZEE, 65, 539 (1946).
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especially since one is usually interested in the detailed shape of the locus
only inthe vicinity of the feedback cutoff frequency. A detailed drawing
can be made of this portion of the 10CUS,while crude sketches of the
remaining portion will suffice. Some workers, however, prefer to usea
logarithmic radial scale, effectively giving a polar form of the decibel-
phase-angle diagram already discussed in this chapter.

Diagrams similar to Nyquist diagrams can also be used in the treat-
ment of servo problems involving pulsed or discontinuous data. These
problems are discussed in Chap. 5.

EQUALIZATION OF SERVO LOOPS

4.14. General Discussion of Equalization. -Equalization circuits and
networks are employed in servo circuits in order to obtain a desired
behavior for the complete system. In the USUaldesign some of the parts
of the system are selected with an eye to availability, test, ease of mainte-
nance, or other reasons. For example, a synchro data transmission is
quite often specified because the completed system may have to tie into
a shipboard free-control system !vhere the synchro system has already
been standardized. The po~ver-supply frequency is often specified m,
for example, 60 cps. If in addition the use of 1- and 36-speed ordnance
synchros is specified, the error signal will consist of a 60-cycle voltage ~vith
an error gain for small errors of 1 volt per degree on the 36-speed shaft
or 36 volts per degree on the l-speed shaft. Other considerations may
have dictated the choice of an amplidyne and d-c motor as the power
drive element. This last choice l~ill then require a scrvoarnplificr capable
of accepting a 60-cycle error signal and deli~ering :~ d-c current to the
control field of the amplidyne; this demands the usc uI’ a phase-scnsitire
detector in the servoarnplifier.

The pertinent constants prcs~nt~d to the servo dwixncr }Vill then be
approximately the following:

1. Combined motor-amplidyne timc ctmstant, 0.25 scc = T~.
2. Effective time constant of the phase-sensitive detector, 0.02

sec = T,.

3. Amplidyne quadrature-field time constant, 0.02 sw = 1’1.

The loop transfer function ~Vith a fl~t frc(l\lcllcy-rcsporlse amplifier
may be written

!!?= .—-––—- --- --- -—---K.
6 p(Tnp + I)(T,P + I)(TWP +- ])’ (120)

where K.= “KY” = wlocity-error constant, dctg/sec pcr deg,

K, = error-measuring element sensitivity, volts, ideg,
K..i = amplifier gain, ma/volt,
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Kc = amplidyne open-circuit gain, volts/ma,
Km = motor speed-voltage ratio, deg/sec per volt,

l/N = motor-load gear ratio, deg/deg.
Thk transfer function has a slope of – 6 db/octave from zero to w = I/T_
and – 12 db/octave to a = l/T, = 1/ Tq and then decreases at 24 db/
octave. It has a 180° lag and thus zero phase margin at

2.5
u = — = l,6cps.

T.

A value of Kv = 6.25/Tin = 25 see-’ will make the system unstable; a
value of Kti = 0.75/T~ = 3 see–l is required in order that the phase
margin be 45” at the feedback-cutoff frequency u, = 0.75/ T., = 0.48 cps.
The buildup time ~~illthen be approximately 7; = 1/ (2j.) = 1 sec. This
system would have a maximum error of 10° when the input is a 30°-ampli-
tude 6-see sine ~~aveand would ordinarily not be acceptable.

Hysteresis in the amplidyne magnetic circuit may also cause con-
siderable error in a system \vith as small a velocity-error constant as
the above. An amplidyne may commonly have a hysteresis loop as
wide as + E~h = t 20 volts. The resulting hysteresis standoff error,
.s~= K., Eah/NK., with K“, = 85° per sec/’volt and N = 300, k then
q = 2°.

Three more or less general methods may he used to modify the
above system in order to improve its performance at either high or 10JV
frequencies.

1.

2.

3.

The proportional integral method is applicable ~vhen a buildup
time and cutoff frequency of the same order of m~gnitude as that<
of the simple system are accept:ll)lc or desirable. In this method,
the loop transfer function is lrft substantially unchanged for fre-
quencies above one-fourth the frcq(lency of the – 6 to – 12-db/
octave transition (that is, abovr a point 2 octjavcs below l/Tn,) and
its magnitude is increased in the loirer freqllcncy range.
Lead or deriv~tive equalization is used to improve the system per-
formance at all frequencies; in particultir, the fccdba.ck-cutoff fre-
quency is increased tvith a corresponding reduction in the buildup
time.
One or more subsidiary 100PS may be introduced in order to. .
improve the servo performance. ‘l’his constitutes a very poiverful
method of equalization and decreases the effects of variations in
some of the elements.

4.15. Lead or Derivative Control. —Lead or derivative equalization is
used to raise the feedback-cutoff frequency. It will, in general, increase
the velocity-error constant while keeping a satisfactory stability or
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phase margin in the region of cutoff. The feedback transfer function of
the simple servo mentioned in Chap. 1 may be written

eo=~ I
E p ‘fm$l + 1-

(121)

This transfer function has an asymptotic characteristic of – 6 db/octave
for u < 1/T- and – 12 db/octave for 1/ Tm <0. The phase angle is

– 135” at a = 1/ Tm, decreasing to – 153.5° at u = 2/T~. For KUTn = 1

the height of the resonance peak will be + 1.25 db (1.15 ratio) and the
feedback-cutoff frequency will be w = 0.78/ Tm. For &7’~ = 2(+6 db)
the resonance peak will be 3.6 db with w = 1.2.5/ T~, and for

K,l’m = 4 (+12 db)

the resonance peak will be +6.3 db with o. = 1.75/ Tm. Thus the usual
stability requirement of a resonance peak between +3 and +6 db would
allow a K. between 2/ 1“~and 4/ Tm. Assuming T- = 0.25 see, this would
correspond to Ku between 8 and 16 see–’.

.4ddlng either an a-c or d-c proportional-derivative equalizer of the
type discussed in Chap. 3 makes the feedback transfer function

OO Kc, 1 G,(T,p + 1)— .— (122a)
e p Z’wp+l GOT,p+l’

eo=~ 1 Tdp + 1—
e

(122b)
P T-P + 1 GoT@ + 1’

where Td = derivative time constant,
G, = d-c or carrier gain (G, < 1),
Ku = KU,GO = velocity-error constant.

The complete study of this transfer function involves the two parame-
ters T,j/ Tm and Go as well as the velocity-error constant Ko. It will be
most convenient to study first the case where Td/T~ <<1. With this
assumption, Eq. (122) can be approximated as

.9. KuTm T~p + 1— -—-—
c (T~p)2 GOTdp + 1.

(123)

The first factor in Eq. (123) produces a phase lag of 180” at all frequencies;
thus the proportional-derivative equalizer must supply all of the lead
required to give the desired phase margin near feedback cutoff. Inspec-
tion of the decibel–phase-margin contour diagram (Fig. 4.27) shows
that the over-all frequency response is 16’o/6,~= +3 db and the loop
phase margin is +45° where the loop gain is +3 db, whereas ]00/0,] = +6
db and the loop phase margin is +30° when the loop gain is + 1.3 db.

The proportional-derivative equalizer has an asymptotic characteristic
of (Go).~ up to u = l/T~, increases at 6 db/octave to u = 1/GOT~, and is
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then constant at O db for higher frequencies. Its phase angle is zero for,
small O, increasing to a maximum at the geometric mean of the two.——
above frequencies, w~ = l/(T~ v’Go), and then decreasing to zero for
higher frequencies. The maximum phase angle is easily shown to be

& = ~ — 2tan–1 &;
2

(124)

solving for Go, we find

()
GO=tana~–~- (125)

The gain at the geometric mean frequency is /G,. Table 4. I gives a
few corresponding values of G, and ~~. .\n equalizer with G, = – 15.31

TABLE$i.1.-}f.aIMuM PHASEANGLEFORPROIWRTIONAkDERIVATIVEIkjIJ;IJZER

75° 60° I 45° 30° I 15. I 7,5.
(:0;,, –35.22 –22.88 –15.310 –9 .5400 –4.600 –2.280

1
G, 57.70 13.93 5.827 3.000 1.698 1,300

db will therefore have a resonance peak of +3 db when K“ !l’m is adjusted
to put the maximum phase margin at a loop gain of +3 db. When this
is the case,

K. Z’. 1

()

l’.
— = 1.414 = (+3 db),

—’&o
(126)

T, &
or

(128)

Figure 4.36 is a decibel-log-frequency plot of this system for TJT, = 10.
Curve a is the attenuation—log-frequency plot. The lower phase-angle
curve c is drawn from the approximate Eq. (123); there is relatively little
difference between curve c and the exact phase-angle curve b in regions
near the phase-margin maximum for a value of TJ Td = 10. The main
difference is a slightly lower maximum phase margin in the approximate
curve. To obtain the desired phase margin of 45° it would suffice to use
a lead equalizer with GOso chosen that the approximately computed phase
margin is 45° — tan-’ Td @o/T~ instead of 45”. To evaluate this
expression the approximate value GO= —15.31 db may be used; one
finds that the required approximate maximum lead is 42.5°. The cor-
~ction of Go for this small change in maximum phase margin is ordinarily
not necessary.
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l-sing ~q. (127), onecomp~ltes aval~~[:ofh”.1’~ = +50.7 db for the
velflcitY-error constant. If 1“~ = ~sec, thiscorrespondsto

and I’d = 0,025sec. ‘~henotchlriflth (see Sec. 31-1) of this leudcqual-
izer for a-c use is then 40/27r = +6.4 cps. It should be pointed out,
howe~rer, that aparallel-T leadequalizcr use{i~vith a60-cps carrier \vill
yield a lower~alue of G, than is requiredin this example and will thus
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4.36.—Lead equalization applied to a singletirne-lag servomotor. (a) Attenuation;
(b) phase angle; (c) approximate phweangleby Eq. (123).

provide alarger phase margin than isnecessary for the +3-db resonance
peak.

Figure 437 is a decibel–phase-margin diagram for the system with
K. and Td/!f~ selected as above. Frequency parameter values have
been marked on the curve. The frequency response 10./0,1 can then be
plotted from this curve by observing the frequencies at which the decibel–
phase-margin curve crosses the respective resonance contours. The
resulting curve is shown in Fig. 438. The asymptotic frequency response
is, of course, constant for frequencies less than feedback cutoff and
follows the 10o/c[ asymptote for frequencies above feedback cutoff.

Use of the lead equalizer has thus resulted in an increase of KaT~ by
50.7 – 3.0 = 47.7 db (increase of K, from 5.7 see-’ to 340 see-’). The
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feedback-cutoff frequency has been raised from u, = l/T~ to a. = 32/T~
(w = 128 radians/see = 20 cps).

It would appear that a higher value of Ku could be obtained through
the use of a smaller value of Td, with a corresponding further increase in
the cutoff frequency. In the usual case, however, Eq. (121) will require
modification because of the presence of other time constants which will
begin to make their influence felt as the cutoff frequency is raised. In
the use of a 60-cps carrier frequency there appear to be limitations

FIG.

o 10 20 30 40 50 60 70 ~ 90
Lwp phase margm in degrees

4.37.—Lead equalization applied to a Singletime.lag servomotorc K, = 34o See-L;
T~/Tm = 0.1.

placed on the use of cutoff frequencies that approach the carrier frequency
or, in some instances, even one-half of the carrier frequency. Another
source of difficulty arises when a phase-sensitive detector is used. A
ripple filter is then required to decrease the ripple voltage, in order not to
overload the output stages of the power amplifier. This ripple filter
must have appreciable attenuatiori at twice the carrier frequency in a
full-wave rectifier and will thus contribute appreciable phase shift at
frequencies above one-half of the carrier frequency.

Inspection of Fig. 4.37 shows that an increase in loop gain of approxi-
mately 12 db will increase the resonance peak to +6 db, and a reduction
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in loop gain of approximately 27 db will increase the resonance peak to
5.4 db—the largest resonance peak that can be obtained by reducing the
loop gain. These two quantities give the magnitude of the amplification
tolerances that should be placed on the system in order to maintain
satisf actor y stability if the other quantities are constant. The velocitY-
error constant would, of course, change by the same factor, and over-all
system specifications may not permit a reduction in K. of more than 12
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FIG.4.38.—Frequency response for a single-time-lag servomotor with lead equalization,
Ku = 340 see-l; TJT~ = 0.1.

db. A check can be made on the effect of a change in T~ on the system
stability by use of Figs. 4.36 and 4-37. Change in T~ is practically equiva-
lent to a change in gain, since the T~–phase-margin contribution near
feedback cutoff is small. An increase of Tm by a factor of 2 would require
a factor of 4 (+12 db) increase in K. to keep the phase-margin maximum
in the gain region for maximum stability since it would increase the length
of the —12-db/octave section by 1 octave. Allowing an increase of T.

by a factor of 2 without changing the velocity-error constant would
correspond approximately to a reduction in gain of 12 db and wouJd
increase the resonance peak to +3.9 db.

No attempt will be made at this time to make a complete tolerance
discussion of the above circuit. The following equations for the lead
equalizer will be useful in a further study:
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where

4.16. Integral

I.\rTEGRAL EQUALIZA IJ’IO,V

E.
– Go

T~p + 1

E; – G,T,p + 1’

h = ~ – 2 tan-’ v@,

G, = -Q%,,

T, = R, C,,

6Ta
~’ + %1

T~ = R,
(131)

6G0 _ R, 6RI R, bRZ

Go – R, + R; RI RI+ R2E’
(132)

1 6G0

6+” = – 2 Cos 4“ G“
(133)

Equalization. —Integral equalization is used in a servo

203

(129)

(130)

loop in order to increase the loop
may be used in conjunction \rith
lead equalization in a loop.

For the moment ~re shall as-
sume that a given transfer func-
tion has been selected and that it
is then desired to increase the loop
gain at lo\v frequencies, Onc ex-
ample of this type arises in con-
nection ~t-itha servomotor having
a quadratic lag factor,

(134)

This basic loop equation could
arise from a tachometer-equalized
servomotor of the type discussed
in the next section. An equation
of approximately this form also
arises in the design of a gyro-

gain at relatively low frequencies; it
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withUu:d,:iticlug. ~ = 0.25.

stabilized fire-control director, In the latter case Eq. (134) represents the
transfer function relating the precession torque applied to the gyro and
the angle through which the director turns in response to error signals
between the gyro and the director,

The feedback transfer function of Eq. ( 134) has an asymptotic charac-
teristic of – 6 dl]?octave for frequencies bclo}v u = 1/T and – 18 db/
octave for frequencies above 1/T. The usual design for the subsidiary
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loop would yield a value of S?of the order of 0.25, resulting in a resonance
peak in ]pOO/e] of +6 db. Figure 4“39 is a decibel–log-frequency and
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FxG.4.40.—Characteristicsof a servomotor with quadratic lag. { = 0.25,

phase-angle–log-frequencyplot of thetransfer function of Eq. (134), for
~ = 0.25. Since theloop gain isrelati~elyc onstanti ntheregion~ ~-here
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FIQ. 4.41.—Frequency response of servO-
motor with quadratic lag. r = 0.25.

flectecl in the zero-phase-margin line.

the phase angle is going through
–180° (O phase margin), it will
be necessary to choose avalueof
KUZ’ that ~vill give a loop gain of
– 5 db or less when the phase
margin goes through zero, in order
to have a resonance peak of +3 db
or less in the frequency-response
curve. A value of Km!f’ = – 11
db will satisfy this requirement.
Figure 440 is a decibel–phase-
margin plot of this system with
over-all frequency-response con-
tours drawn in for K, T = – 11
db; a part of the curve has been re-
The frequency-response maximum

increases to +6 db with a further + 1.5-db in~rease- in KVT. The servo
becomes unstable for an increase in KVT of only +5 db and would be
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rather unsatisfactory. Figure 4“41 is the corresponding over-all fre-
quency response 100/0,1.

Feedback cutoff occurs at U. = 0.3/!!’, although the resonance peak
occurs at c+ = 1/2’. The frequency response exhibits a fairly deep
minimum at a frequency between feedback cutoff and the resonance
peak. If one assumes T = ~ see, then ~, = 5.3 see–l, ac = 0,7 cps,
and w = 2.4 cps.

This system can be equalized by the use of a proportional-integral
network having the transfer characteristic

Eo = T,p + 1
x, A,T,p + 1’

(A, > 1). (135)

This has an asymptotic characteristic of O db for u < l/(A oTJ, – 6
db/octave for l/( AoT,) < u < l/T, and is constant at l/Ao for higher
frequencies. The attenuation A 0 will be chosen quite large, and the time
constant T1 will be larger than the time constant T appearing in the
quadratic factor. The phase angle of the proportional-integral equal-
izer will be zero for low and high frequencies and will approach a maxi-
mum negative }-alue at the geometric mean of the frequencies l/(A ~Z’l)
and l/Tl.

Addition of the equalizer phase angle to that of the original loop will
give an over-all phase angle having a maximum negative value of about
– 180° at u = (<A O/TJ1 and a minimum negative value between the
frequencies u = l/Tl and ~ = I/T; it then decreases toward – 270° at
higher frequencies. It will then be desirable to place feedback cutoff
near the minimum negative phase angle between u = 1/ T1 and o = 1/T.
The phase angle near cutoff should be in the neighborhood of – 135°.
The phase-angle contribution of the proportional-integral equalizer is

Arg ~ . – tan–l wAOTI + tan–l UT1. (136)

For large A 0 (A 0 = 40 = +32 db in the present example) we have
approximate y

(137)

From Fig. 4.40 it appears that the phase margin of the original loop can
be decreased by approximately 30° at u = 0.3/T. This would mean that
we can set

tan–l ().3 !# = 60° (138)

or
~1 =57
T

. . (139)
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‘l’he feedback transfer function can then be written

KVT T,p + 1eo – 1—
e Tp AoT,p + 1 (Tp)2 + 2{Tp + 1“

(140)

Figure 4.42 is a decibel–log-frequency and phase-angle-log-frequency plot
for AO = +32 db, T1/T = 5,62 = +15 db, f = 0.25. The factor
.4O/KtiT has been taken out in order to facilitate comparison with the
previous system. The loop gain curve is still flat in the region of zero
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F]G. 442.-Characteristics of integral-equalizedservomotor with quadratic lag.

A, = 32 db; TI/T = 15 db; ~ = 0.25.

phase margin; it will again be desirable to set KUT at such a value that
the loop gain will be —5 db when the phase margin is zero. This will
correspond to K. T/A o = — 12 db (K, T = +20 db) for this example.
Figure 4.43 is then the decibel–phase-margin diagram, with the appropri-
ate 100/6,1 cent ours. Figure 4.44 shows the frequency-response curve
and the asymptotic 100/cl-curve. The [0~/~\-curve is useful for esti-
mating the magnitude of the error at low frequencies where 100/c\and
10,/,] are nearly equal. The frequency response is seen to have two
maxima of +3 db, one below and one above feedback cutoff. Inspection
of the decibel–phase-margin diagram shows that any smaller value of
T1 would make the phase-margin maximum so narrow that either one or
both of the frequency-response maxima would be larger than +3 db.
The choice of T,/T = +15 db has also made this system quite sensitive
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to a change in Kol’. .4 change in K.T of +1.5 or –12.5 db will raise
one of the frequency-response maxima to +6 db.
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FIG. 4.43,—Charact,eristics of integral-equalized servomotor with quadratic lag.

Comparing this with the original system, we see that the addition of an
integral equalizer with an attenuation A o of +32 db has increased KtiT

from – 11 to +20 db, an increase of +31 db. The feedback cutoff fre-
quency is now u. = 0.34/T, as +eo
compared with the previous UC= +~
0.3/ 2’. In other words, the low-
frequency loop gain has been in- ~ ‘a
creased without an appreciable :: +20,
change in cutoff frequency. This ~ ,0
is the usual result obtained with
integral equalization. -20

It should be pointed out, how- -w
ever, that the use of ~ = 0.25 and (1.0020.0U40.010.020.04 0.1 0.2 0.40.61.02.0

UT
TJ2’ = +15 db has made this FIG.4.44.—FrequeacYresponseof serve
system more sensitive to changes with integral-equalizeduervomotor with
in KVT than would ordinarily be quadraticlag.

desired. The most straightforward method of improvement would call
for a larger value of ~ (perhaps 0.5) and a slight increase in the ratio
T,/T.
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4.17. Equalization Using Subsidiary Loops. —Feedback has long been
used to change and improve the performance of electronic amplifiers.
Feedback may be used to linearize the power-output stages, to hold more
nearlY constant gain, to obtain a special frequency response, and for
many other purposes.

Subsidiary loops are used in servomechanisms for these same purposes,
with the added complication that more kinds of elements are available,
since here one admits mechanical and electromechanical devices. The

‘w
FI~.4.45.—Subsidiary loop.

tachometer generator, for ex-
ample, delivers a voltage propor-
tional to the velocity, or the
derivative of the rotation angle of
a shaft. A motor acts like an in-
tegrator in that its velocity is
proportional to its applied volt-
age. A potentiometer delivers a

volt age proportional to its rotation angle. A synchro transmitter and
control transformer deliver a voltage proportional to the difference in their
shaft angles.

The MIT differential analyzer’ is an example of a complex multiple-
100P servomechanism which is used in the solution of differential equa-
tions. Each of its major units has two or more servomechanisms incor-
porated in it. The integrator, for example has two servo follow-ups
which receive electrical data and drive the lead screw and integrator disk.
The integrating wheel merely turns an electrical transmitter which is
followed up by another servo at the point where the integrator wheel
angle is used. The various units are interconnected through an electrical
switchboard. The whole mechanism may be looked upon as one or more
major loops representing the clifferential equation, with many subsidiary
loops involved in the servo follow-ups.

Consider the subsidiary loop represented symbolically in Fig. 4.45.
Its transfer function may be written

or

Y,, Y3, Y,3Y3,y,,=;==
1 + Y23Y32

(141)

(142)

Equation (142) is convenient to use in the frequency region where

YZSYSZ= Y2Z

is small compared with 1; it indicates that the subsidiary loop has practic-
1V. Bush and S. H. Caldwell, “A New Type of Differential Analyzer,” J.

Franklin Inst., 240, 255 (1945).
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ally no effect on the direct transmission through its element YZ9. In
the frequency region where YZ, is large compared with 1, the direct-
transmission element YZ3 is replaced by the reciprocal of the reverse-
transmission element YW as can be seen frOm Eq. (141). The above
will be recognized as the usual result: one can obtain the reciprocal of a
network over a given frequency range by placing it in the &portion
of a feedback amplifier.

It should be pointed out that although it is usually convenient, it is
not necessary that a transfer function be stable when it is used as an
element in a larger feedback loop. The function YM, for example, could
have a negatively damped quadratic factor in its denominator, arising
from the function (1 + Y2z)-’. The use of such an element will, however,

require careful use of the general Nyquist criterion as discussed in
Chap. 2.

Proceeding to an example, let us consider an amplidyne coupled to a
d-c motor with a d-c tachometer driven by the motor. Figure 4’2a of
Sec. 41 is the correspond~ng symbolic d~agram, with

em KAKaK.—. (143)
C2 ’23 = p(T~op + l)(Tqp + l)(T~P + 1)’

002 = YSZ = K.p,
x

(144)

00 = Y,, = ;,
E
012 K,
– = Y,, = ml;
e

(145)

(146)

Omhas been used in place of the 83 of Fig. 4.2a. The over-all feedback-
transfer function associated with differential 1 is then

do = y;,
— — = Y,,,
e 1 + Yn

(147)

where

, (148)YY, = Y12Yz3Y31 = T ~(Tmap+ l)(T,~’~Tfi(T,p+ l)(TJP+ 1)
m.

‘“ = ‘23Y32= ~Tmap+ l)(T$’\ l)(Tjp + 1)’ (149)

Equation (148) has been partial] y nondimensionalized through the
use of T~a. This is usually a relatively fixed parameter and cannot be
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varied in the solution of a particular design problem. The following
time-constant values will be assumed:

Tma = motor-amplidyne time constant = 0.25 see,
T, = amplidyne-quadrature time constant = 0.02 see,
T, = amplidyne-control-field time constant = 0.002 SCC,
T, = ripple-filter time constant = 0.04 sec.

The constant K] 1has the dimensions of see-’ and is related to the velocity-
error constant. The constant KM is dimensionless; it has been called the
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FIG.4.46.—Asym@otic characteristicsof amplidynewithdirecttachometerequalization

antihunt gain. Equation (147) may be rewritten as follows:

(152)

It will be useful to make first a decibel-log-frequency plot of both Y~l
and YZZ on the same piece of paper, as shown in Fig. 4“46. Curve
A, the asymptotic plot of YM, has a break from – 6 to – 12 db/octave at
oT_ = 12.5; its corresponding phase margin at this break would be
approximately 45°, decreasing to approximately 30° at uTW = 25.
This would mean that the largest useful value of K2.zwould be between
+22 and +34 db since it is most convenient in this case to make the
subsidiary loop stable. The value of KZZ = +30 db gives the asymp-
totic Curve B for Yza/(1 + Yaa);’ this coincides with YZZfor frequencies
above acz = 19.5/T~a. The Odb axis for Curve B has been set at –30
db. From Eq. (152), the asymptotic Curve D for YII is Iyql!db (Curve
C) minus Iy221ab (Curve A) PIUS [y22/(1 + y22)]db (Curve B); this CO~-

cides with Y~l (Curve C) at frequencies above CM The resulting
Y,, = oo/c asymptote has a break from – 6 to – 12 db/octave at u = l/T,
and a break from —12 to – 18 db/octave at u = u.,. The subsidiary
loop has shifted the break in Y~l at l/T~a up to its cutoff frequency u,2.
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The phase margin associated with me Y,, asymptote would then be
approximately 45° at co = 1/ T,; the complete system would probably be
operated with feedback cutoff occurring at a slightly higher frequency of
perhaps WI = 8/T_a. This would correspond to a value of

K,,T~a = +50 db

Curve E is the asymptote for 0./0,, with its O db at – 50 db. Curve D,
when referred to this axis, is then the loop gain O/c; it gives an indication
of the error for lo~v-frequency sinusoidal inputs. The low-fr~quency
– 6 db/octave, if extended to higher frequencies, Ivill intersect the
– 50-db ordinate at a frequency equal to the velocity-error constant:
KuT_ = 10 or K. = 40 see-’. The single-loop system vith Y,l = Y~,
would have been operated u-ith feedback cutoff at approximately

and with a velocity-error constant of K.Tma = 2 or K, = 8 see–l. The
addition of the subsidiary loop has thus made an appreciable impi-ove-
ment in the system.

It may be remarked that a reduction in T, that would permit a larger
antihunt gain and higher feedback-cutoff frequency in the tachometer
loop would not make an appreciable improvement in the over-all system;
the – 6 to – 12-db/octave break will still occur at o = 1/ T,, and this
sets an upper limit on the feedback-cutoff frequency for the combined
system. The feedback transfer function Y,, could, of course, be modified
by a lead equalizer in Y,,, and in this way a higher cutoff frequency could
be obtained for the complete system.

A more accurate computation of the over-all feedback transfer func-
tion Yll can be obtained by plotting the tachometer transfer function
YZZon the decibel–phase-margin diagram w-ith the appropriate contours
for IY22;i(l + Y2.z)I and Arg [Yz.z/(1 + Y,,)]. These curves can then
be used together with Y~,/ Y,, to give accurate values of Y,l. This
procedure ~vill be illustrated in the the next section.

The feedback transfer function Yll can be increased for low fre-
quencies by including in YS, a high-pass filter that will reduce Y22 to
zero at low frequencies. The cutoff frequency of this high-pass filter
should be made so low that the —6-db/octave asymptote in Yll is at
least 2.5 octaves in length (15 db), .4 single-section high-pass RC-filter
gives

“P .–K,p,Y,, = —
T~p + 1

which changes YZZinto

(153)

Kt,T,p
y?? = ‘ZS1’S? = ~T~ + l)(T~~p + l)(Tqp + l)(T,p + ]j” ‘154)

The transfer function Y~, is left unchanged,
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Equation (152) can also be used to construct the asymptotic decibel-
log-frequency curves for Yn. Figure 4“47 is constructed with the same
upper cutoff frequency for the tachometer loop and with

Z’h = 0.28 sec = l.l!f’n..

The various curves have been lettered in the same manner as Fig. 4.46.
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FIG.4.47.—Asymptoticcharacteristicsof amplidynewith high-passtacllometerequali-
zation.

Curve E is the I%/0, I asymptote. Feedback cutoff has been reduced to
u. 1 = 4/T_, and the systcm would be operated \vith

(KvTm),,, = (KnTJij = +39 db,

as compared with the previous value of +20 db. A comparison of the
loop-gain Curve D with the previous result shows that the two systems
have equal gains, ‘+28 db, at u = 4/T~.; the high-pass systcm has
the higher loop gain at lower frequencies and the lower loop gain at
higher frequencies.

APPLICATIONS

4.18. SCR-584 Automatic-tracking Loop.—This system serves as a
good illustration of the decibel–log-frequency design techniques because
of the availability of the considerable amount of experimental data con-
tained in Radiation Laboratory Report 370.1 The &Tyquist 10CUSand
differential-equation methods were used in the design of this equipment.

The system’ comprises a radar transmitter and a receiver which
delivers a modulated video signal to a diode detector. A so-called
“slow” automatic gain control operates on the radar receiver gain in

LG. J, PlainandS. Godet, “ Data on SCR-584 ControlEquipment,” Dec. 17, 1942.
1“ The SCR-584 Radar,” Electronic&,18, 104 (1945).
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such a way that the amplitude of the video modulation envelope is pro-
portional to the angle between the parabolic-reflector axis and the targe$ ‘,$
that is, to the angular error in tracking the target. The signal is mod% ~~~
Iated at 30 cps, since reception takes place through a conical-scanning ]
antenna placed at the parabola focus and rotated at this speed by an J
1800-rpm induction motor; this motor also drives a two-phase permanent-
magnet reference generator. The 30-cps reference generator is used iti i

the commutating or phase-sensitive detector to enable separation of the )
elevation and traverse (or azimuth) error signals. 1

e,
Gear I , -+--e“,_]train

Motor

6
Speed

Radar feedback
transmitted bridge

and receiver tE
Video error Antihu;t I

signal
II Em

feedback

Third
filter

detector and
30 cps filter

EJ

I (3 Commutating 6L6

30Cps circuit and
ripple filter .%

error stgnal r

-A30 cps reference ~.’-’. d

FIG.44S.-SCR-584 trmlcil!g-wn,~blockcliagmnl.

In what follonx it \villbe assumed that the commutating detector has
performed its function and that the analysis can be ctirried out separately
for the elevation and azimuth channels. ‘Nw circuits of the tJvo channels
are identical and can therefore IN considered separately. Figure 4.48
is a block diagram of the servo systcm. The torque limit circuits \vill
not be discussed in the follo\ving and have not been included in Fig, 4,48.
Neglecting noise modulation effects, the modulation envelope is a true
representation of the antenna misalignment and will be assumed to be
in phase with the actual error c Radiation Laboratory Report 370
gives an over-all frequency response for the third detector and 30-cps
filter. The data are fairly well fitted by a single-lag transfer function
with 7’3 = 0.013 see:

(155)

where CSis the amplitude of the 30-cps error signal. The commutating
circui$ can be considered as producing a slo\vly varying voltage \vith
superimposed ripple. hlost of the ripple power is 60 cps and higher,
since it is fllll \rave. The a\cr:~ge value of the commutator outpllt is
equal to the amplitll(k of th(’, 30-cps error signal associated wit}~ the
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azimuth or elevation error. The commutator output is then fed through
a ripple filter of the type illustrated in Fig. 4“49. The nominal values
indicated would give a quadratic lag with ~ = 0.35 and a cutoff frequency
of 71 radians/see or 11.3 cps. Actual measurement indicates that the
frequency response depends on the amplitude of the input voltage E, but
is fairly accurately represented by the transfer characteristic

i?,—.
E, (T,pl+ i~’

(156)

with T, = 0.01 sec.

The 6L6 output stage can be looked upon as a combined mixer and
amdifier. The out~ut of the ripple filter is applied to the grids of a

2000h lOOk

T
o

E.

o 1 0

FIG.4.49.—SC R-5S4 commutator-ripple
filter.

pair of 6L6 tubes, and the amplified
antihunt feedback voltage is differ-
entially applied to the screen grids.
The plate currents of the two 6L6’s
flow through two amplidyne control
fields; the difference current is effec-
tive in producing the amplidyne out-
put voltage. The inductance of each
control field is approximately 30
henrys, which, with the assumption of

100 per cent coupling between the two control fields and a 30,000-ohm
plate resistance for the 6L6, gives

(157)

with the control-field time constant T. = 0.002 sec. The quadrature-
field time constant T* was measured and found to be 0.02 sec. Using
the armature resistance of 6.9 ohms, rotor inertia of 7 lb inz, and the
name-plate data of 0.5 hp, 3450 rpm, 250 volts, 1.9 amp, one obtains
Tfi = 0.041 sec. Combining the motor and amplidyne and using the
armature circuit resistance of 11 ohms together with the motor resist-
ance of 6.9 ohms, one finds the combined mot or-amplid yne time constant
T- = 0.10 sec. This compares with a measured value of 0.11 sec for
the combined time constant in the system. Using Eq. (157) and the
above time constants, one then obtains

(T-p + 1)(1’,p + l)(l”cp + l)ptL = K.K,E, – KmKJEJ. (1Z8)

The speed-feedback bridge is of the type discussed in Sec. 3.15. It is
redrawn in Fig. 4.50, along with the connections between the motor and
amplidyne. Referring to Fig. 324, we see that
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R,=l?, +R, =3.1 ohms,
R.= R,+ R, =5.8 ohms,
R. = R, + R, = 10.1 ohms.

The speed-feedback voltage is then related to d- by”-- ----- ”--I,lleequabluu

215

(159a)

is the effective tachometer constant, and

~ _&Rm
R,’T

T.~=Ra+Rm+Rc ‘;

the loading effect of C, in Fig. 4.50 has been neglected. On substituting
in the numerical values, one obtains !l’~o = 0.22, Tm~ = 0.024 sec.

R,
5.ik

%
C4 Al

F1
R,

RI Cl

1~~~:

2 4.7
A2C1 10k0,5pf

F2 R,
R, E,

F3
c2il 1.1

F4
;:

R6 R5
2 1,1

cl C4

450

I 1

.—Amplidyne-motor connections and speed-feedback bridge.

The capacitor Cl in Fig. 4“50 is a capacity load on the divider resistors
R, and R,. It looks into a very high impedance at the input to the feed-
back filter. Equation (159a) then
becomes

~=x T.,p+l
* ‘ T=p + ~ pfk (159b)

where T= = (R IRz/R~Rz)cI = 0.0017 E*
sec. This capacitor is introduced to
provide a Klgh-frequency cutoff and
:prevent brush noise and general pick-
up in the system from activating the o

feedback-amplifier stages.
FIG.4.51.—SCR-5S4antihunt filter.

Figure 4.51 is a schematic diagram of the high-pass equalizer or anti-

hunt filter used in this system. The voltage E. is supplied by the low-
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impedance bridge and may be considered to have a zero source impedance.
The voltage EY is applied to a vacuum-tube control grid R, can then be
taken as the only load. The transfer function can be shown to be

E, ‘,c2R@’(&+’)—.
E,

‘1C1P(R,C2P+’+%) (+ P+1)+R2C2P+’- ‘16”)

This transfer function can be factored and rewritten as

E, T, ()
~ ‘ (TLp + 1)
u.—.—

E,

[()

2 (161)

“ (T,p + 1) ~ +2r:+l
1

where TL = L/Rl and Tl, u., ~ are obtained by factoring the denomina-
tor. Putting in the constants given in Fig. 4.50, one finds

T. = 0.253 see,
TI = 0.558 see,
us = 3.835 radians/see,

f = 0.608,
T1/TL = 2.206 = +6.9 db,

u.TI = 2.140 = +6.6 db,
W%l’L = 0.970 = –0.3 db.

The asymptotic characteristic rises at 12 db/octave to u = l/ T,, at
6 db/octave for l/Tl < u < w-, at –6 db/octave for u. <0 < l/TL;
it is then constant at O db for higher frequencies. Using the previously
defined quantities, one obtains

0. =
KmK,K, KmK~K,(TI/T.) (P/un)’(T.P + 1) (T~oP + 1) ~

(T,p+l)(T,p+l)2’– ~T1p+ ~, ~ ‘+2*E+ 1 (Tp+ I) m

[() 1
z

p(Twp + l)(T,p :l)(Tcp +“~)
(162)

Solution for 0~/6 gives

O*—.
c

[

KmK,Ka

P(Tm.P + l)(T,P + l)(~,P “+ 1)(T3P + l)(T,p + 1)21
()KmK,KO FL ~~‘1 ~ 2 (z’~p + l)(TmoP + 1)

l+(T=P+l)(TmaP+ l)(T,P+l)(TCp+l) (T,P+l) [(P/U. )2+211P/ti.)+1]
(163)
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In terms of the gear ratio N between 0. and tl~ and the loo~-transfer
functions Y!, and- Y,,, one can write

0.— = Y,, = *2,f
where

y:, =
K.

p(7’m@ + l)(T,?J + 1)(7’.P + 1)(7’3?-J
Y,, =

()
K,, > ~

2

7’,, Un
(~’~ + 1)(7’mLO~

(T’=p + l)(Tm@ + 1)(7’<,P + 1)(7’.p + 1)(7’lp +

(164)

+ l)(Trp + 1)” (’(;5)

+ 1)

l)[(l?\2+2re. +1]’
L \cI)./ w’ (1(i)

.K. = KmK,Ks/N = velocity-error constant,
KZZ = K~KJK, = antihunt gain.

The antihunt gain KZ, has been so defined that it is the zero-frequency
loop gain around the speed-feedback loop when the capacitors in the anti-
hunt filter are short-circuited out (the filter then has unity gain at all
frequencies). The antihunt gain is a dimensionless number; the anti-
hunt gain control on the servoamplifier can be adjusted to a maximum
value of K,j = 70. The forward gain control on the servoamplifier
could be adjusted to make K. a maximum of 540 see–l.

The following is a summary of the constants for the system:

1
“ = 0“558 ‘ec = ~8’ ‘“
w. = 3.8 radians/see,

1
“ = 0“253 = 3:9’

T
1

ma= 0“11 ‘ec = 9:0’
T~, = 0.022 = ~, &

Tq = 0.02 = &,
TS = 0.013 = ~,
T,= O.01=~, -., .

T. = 0.002 = &i, I ,>,.;.1 .

T, = 0.0017 = +, f\). . .

f = 0.608.

Figure 4.52 is an asymptotic decibel-log-frequency plot of Y~l/KO

and Yt2/K2P. A value of K22 = +26 db or an antihunt gain of 20 was
chosen in drawing the combined curve for Y~I/( 1 + YZJ.

As long as the antihunt loop is reasonaby stable (perhaps 15° phase
margin at cutoff), it is possible to construct a phase-angle–log-frequency
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FIG. 4.52.—Asymptotic loop gains.
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curve from the asymptotic curve for Y11and to use this phase-angle curve
along with the asymptotic decibel–log-frequency curve in selecting the
value of K. that will give satisfactory system stability. In the present
example, however, all of the steps will be carried through in detail, in
order to illustrate the general method.

-28
1. I I I 01 I

-24

-20

-16

-12

-8

3-4
.E

“: o

;44

~8

+12

● 16

-’-+Z(J

+24

+28
-180 -160 –140 –120 -1oo -80 –60 –40 -20 0

LooDDhase amzle in dearees
FIG. 4.54.—SCR-584 antihunt-loop decibel–phase-angle diagram. Kzz = +26 db.

Figure 4.53 is a plot uf the exact decibel–log-frequency and phase-
angle–log-frequency curves for antihunt-loop transfer function Y22.

Examination of this curve indicates that KZZ = +26 db will give a
stable system. The loop gain and loop phase angle can now be plotted
on the decibel–phase-angle diagram (Fig. 4“54). The contours on this
diagram permit (the sign having been changed as discussed in Sec. 411)
a determination of the transfer gain and phase angle for the function

Y, = 1 + Y22. (167)
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The loop gain IY221..,is plotted against Arg ( Yz,), with the radian fre-
quency u as a parameter. The contours are those of IYzl and Arg ( Yz)
and are correctly marked in decibels and degrees, for

–180° < Arg (Y,,) <00.

The contour diagram could be extended to positive values of Arg (Y,);
but since the form of the contours is obtained by a reflection in the loop-
gain axis, it is sufficient to reflect the curve for Yz2in the line Arg ( Y,,) = O
and plot back across the same set of contours. For this part of the curve
the IY~l contours then retain the same values, but the values to be

+60 +150

+50 +i25

+40 +Ic!o

+30 +75 ~
‘0

~+20 +50 “:
-~

“:+1O +25 -

30
%

0:

-10 – 25

-20 –50

-30 –75

-40
02

–loo
0.4 0.6 1 2 461020 40 60 100 200 400 600

Frquency m radians/sec

FIQ. 4,55. —SCR-5S4 antihunt-tr.ansfcr gain and phmc ang]c.

associated with the Arg ( Yz) contours must be regarded as the negative
of those marked on the diagram. Thus starting at high frequencies the
curve crosses the —180° axis. The loop gain increases in value to
approximately +24 db at u = 6 and Arg (Y~.J = 0°; the curve is then
reflected and becomes asymptotic to the —180° axis as co-+ O.

The value of KW = +26 db used in constructing Fig. 4.54 gives a
stable ant ihunt loop with approximate y 12° phase margin at low-
frequency feedback cutoff and a peak gain of approximately – 9 db.
Increasing K,Z by 16 db would make the antihunt loop unstable at the
high-frequency end.

Figure 4.55 is constructed by reading off the values of the transfer
gain ~YZld. and the transfer phase angle Arg ( Yz) from the contours for
Y2 = 1 + Y*2.

Figure 4.56 gives the loop phase angle for the loop transfer function
Y~l that remains when the antihunt loop is inactive (Y,, = O). The
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curve for Arg ( Yu), also shown in this figure is constructed by subtracting
Arg ( Y,) (Fig. 4.55) from Arg ( Y~l):

Arg (Y,,) = Arg (YY,) – Arg (Y,). (168)

Figure 457 shows the corresponding curves for the primary-loop gain
and for

Iyllldb = IY!,l,, – Iy,l~.. (169)

Reference to Fig. 4“56 shows that there is a maximum phase margin of
+40° (180° – 140°) in the frequency region near a = 8 radians/see.

+25 ——<

+20 -+1 \
~ \+o,5 +0.25 o

+15 2,~y ~ \)

=0 J / /

8a. +6

–3
–6

-lo ~ — 20_ — . — — —

—

-18
-20

-180 -170 –160 -150 -140 -130 –120 -110 -102 -90
Loop phase angle in degrees

FIG. 4.5S.—SCR-5S4 decibel-phase-angle diagram.

It follows that optimum stability will result when K. is so adjusted that
this maximum phase margin occurs at a loop gain of approximately +2
db. Selection of KO = +46 db (200 see-’) accomplishes this; Fig. 4.58
is the resulting decibel–phase-angle diagram for the system with

K. = 200 see–l.

The amplification for Ioo/0,1 can be read from the amplification contours;
it is seen to have a resonance peak of +3.8 db at u = 8 radians/see
(1.3 Cps).

The over-all frequent y response for the system with K. = 200 see-l
and KZZ = 20 is given in Fig. 4.59. It will be seen that the extension of
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the low-frequency – 6-db/octave slope for 1190/~Iintersects the O-db axis at
u = 200 = K,.

It follows from Fig. 4.58 that an 1l-db decrease or an 8-db increase in
K, will raise the resonance peak to -i-6 db. This means that the over-all
system does not have much sensitivity to changes in the error-signal gain—
one of the requirements for an automatic-tracking system of the type of
the SCR-584. ... ffl, ..! ‘.,

n’, ~,
+60 .. ‘r a ~? ‘t “~
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FIG. 4.59.—SCR6S4 frequency response.

One observes from Fig. 4.58 that the stability of the system is deter-
mined by the phase angle and gain of YI I in the frequency range

3<u <20.

Changes in KZZ and Km will obviously have no effect on Arg (Y$,). Refere-
nce to Fig. 4.54 shows that a change in KZZwill have little effect on Arg
(Yz), since the contours of Arg (Yz) are almost parallel to the contours of
Arg ( Y.z2). The contours of [yzld~are also almost parallel to the contours
of ]y22\db in this frequency region. Thus an increase in KZZ will merely
move the complete curve of Fig. 4.58 downward by the same number of
decibels, assuming that Kv remains constant. Also, increasing KV and
KZ* by the same factor wiU leave the stability and cutoff frequency
unchanged.

A study of the power spectrum of the angular error in automatic
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tracking with the SCR-584, by the method of Chap. 6, indicates that the
location of the peak varied during normal operation from 0.4 to 0.9 cps
(2.5 to 5.6 radians/see) and that the peak height was approximately
+8 db when the resonant frequency was 0.9 CPS,with greater peak heights
occurring as the resonant peak shifted to lower frequencies. This is
precisely the behavior that would be expected from Fig. 4.58 as either
K“ is decreased or K,, is increased from the value used there.

Referring to Fig. 4.52, one can investigate the behavior of the system
as some of the parameters are varied. Among these are the combined
motor-amplidyne time constant T- and the time constant 7’”0. These
two time constants can change appreciably as the regulation resistance of
the amplidyne’ is changed through its manufacturing tolerance of 25
to 42.5 ohms (compared with 11 ohms as used in the foregoing analysis).
For R. = 25 ohms,

Tma = 0.11 ff j ~:~ = 0.19 see,

5.8 – 1.6 = 0,025
‘“0 = 0“19 25 + 6.9

sec.

For R. = 42.5 ohms,

T.= = 0.1, 4:~~~~ = 0.3 mc,

5.8 – 1.6
‘m” = 0“3 42.5 + 6.9 = 0“026

sec.

The change in R. is thus seen to correspond primarily to a change in TmO

with little change in Tmo. The change in Tma over the above range can
be almost completely removed from the over-all system by a readjustment
of KZZthat leaves K, and the frequency response unchanged. This would
indicate that, as has been shown by experience, the manufacturing
tolerance on Ra is sufficiently precise. Variation of amplification in the
various elements can, of course, be corrected by adjustment of the two
gain controls that cliange Km and Kzz.

The time parameters that could give trouble are T,, u*, and T.;

these determine the length of the – 6-db/octave slope in the YII asymp-
tote. The manufacturing tolerances on these parameters are not known
to the authors, but it would seem reasonable to require Tq to be less than
0.03 see, T~ to be greater than 0.35 see, and U. to be less than 5.6 radians/
sec. These tolerances were probably held in production, since they
correspond to a 40 per cent change from the nominal value.

4.19. Servo with a Two-phase Motor.—The two-phase motors men-
tioned in Chap. 3 are quite useful in low-power servo applications. They

1GE amplidyne model 5.4M65FB2A, 500-watt, 250-volt, 115-volt, three-phase
drive motor.

I
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have been widely used in computing mechanisms and remote positioning
applications. As an example, we may consider a servo system designed
originally to drive a computer shaft in synchronism with train angle data
provided by an antiaircraft director. This uses a Diehll two-phase
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FIG. 4,60.—Brake test at 115 volts, 60 ~P~Of Die~ motor FPF49.7.

servomotor. First a brief outline will be given of the experimental
procedure involved in obtaining the motor characteristics

The motor rating is 22 ‘mechanical watts output at 2200 rpm; Fig.
4.60 is a copy of the manufa@r&’s data. The rotor inertia is 0.66

oz-in. 2, and the impedance looking into either of the phases varies from
350 ohms at not load and maximum speed to 180 ohms when stalled.
Each winding takes 70 watts or 75 volt-amperes when the motor is stalled,
with 115 volts on each winding.

1S.S. No. FPF49-7, 115volts, 60 cps, Diehl ManufacturingCo., Sornetille, N. J.
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Figure 4“61 shows the free-running speed and the stalled torque as a
function of the control phase voltage with 115 volts on the fixed phase.
Inspection of these curves shows that Km = 840° per second per volt and
K, = 0.25 oz-in. /volt. The measured inertia of the motor and its
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2000 8?
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E .s
E :

1500 b~
f
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y /

- 4
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0
0 10 2Q 30 40 50 60 70°

volts

FIG. 4.61.—Characteristics of Diehl FPF49-7 two-phase motor.

associated gear train gave an inertia of 1 oz-in. 2 Conversion of these

values to a common system of units gives

f“ = g = 0.018 oz-in. radian per see,
.

(170)

T. = ~ = 0.15 sec.
m

The speed-torque curve of Fig. 4-60 gives f~ = 0.022 oz-in./radian per sec
for the internal damping coefficient, that is, the slope of the speed-torque
curve at zero speed point. Assuming that the stalled torque is linear
with voltage, one obtains from Fig. 4.60 Kc = 0.26 oz-in./volt.

The value of Km can then be obtained from Eq. (170). All of the
quantities are seen to be in fair agreement, an indication that the common
brake test data can be used to obtain the motor time constant T~ and
the speed voltage constant Km.
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The error signal in the system we shalf consider is obtained from a
synchro control transformer that is geared down from the motor by a
ratio of 10. The error signal is then a 60-CPS voltage with a gradient of
O.l volt perdegreej referred tothe motor shaft. The fixed phase of the

204.4k + 300
9.lk 4.6k 19.9k

CT
error
signal

o

FIG.4.62.—Phase-lagnetworkalldbridged-Tequalizer.

motor is put across the 115-volt a-c line, and theerror ismadeto lag the
line by 90° through the use of a two-section RC phase-lag network. A
conventional a-c amplifier is used with a pair of push-pull 807’s in the
output; the amplifier has a voltage gain of 22,000 (+86.5 db). It
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FIG. 4.63.—Frequency response of equalizer and phase-lag network,

delivers approximately 45 watts into the stalled motor—enough to
drive the motor to its maximum power output at 22oO rpm. Inverse
feedback is used in the amplifier in order to keep its output impedance
at a low value (approximately 350 ohms). The phase-shifted error
signal is passed through a bridged-T equalizer with a notch width
of 5.5 cps (T’~coo= 11). Figure 4.62 is a schematic diagram of the fil-
ter and phase-lag network. Figure 4.63 gives a plot of the frequency
response of this filter and phase-lag network, together with a plot of
1 + i (U – coo)~d, which is the exact response for a lead equalizer in a
carrier-frequency system with carrier frequent y jo = COO/2mand derivative
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time constant Td. In each curve the gain has been plotted with its
6@cps value as a reference level. The input attenuator and output
cathode follower are included in Fig. 4“62 as an example of one method of
coupling the equalizer into the circuit; in this example the over-all
voltage attenuation at 60 cps in 69 db. The input attenuator has a
loss of 9 db; the phase-lag network a loss of 20 db; and the bridged-T
attenuation is 40 db. The amplifier used in this particular application
was also used in 11 other servo channels with different equalizing net-
works. This arrangement required cabling between the equalizing
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l?IG. 4.64.—Experimental decibel-log-frequency plot of the loop transfer function.

network and the servoamplifier. Since a low-impedance line is less

likely to pickup signals from adj scent circuits, it was advantageous to use

the cathode follower as an impedance transformer. The line from the

servoamplifier to equalizer thus operates with approximately 500 ohms

impedance to ground.

Figure 4.64 is a plot of the loop gain for this system. The experi-

mental setup made use of a synchro-control transformer as a generator of

a modulated 60-cps signal which was connected to the input terminals of

the network shown in Fig. 4.62. A constant 60-cycle voltage was

impressed on its stator; and as the rotor was turned, its voltage was

E~ = E COSu~t COSu~t, (171)

where E = maximum value of the 60-cycle carrier,

fo=; =c arrier frequency, cycles per second,

.f~ = ~ = rotation speed, revolutions per second.

The voltage E. is of the same form as that which would be produced by
a small-amplitude sinusoidal motion of a synchro-control transformer in a
synchro data-transmission system. The magnitude of E was changed
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throughout the course of the experiment in order to maintain the maxi.
mum voltage applied to the control phase of the motor at 50 volts rms.
The amplitude of oscillation of the motor shaft or a geared-down shaft
was observed optically at the low frequencies and electrically at high
frequencies. The ratio of the motor-shaft amplitude in degrees to the
voltage E of Eq. (171) is plotted in Fig. 4“64.

The system was operated with a velocity-error constant K* = 500 see–’
which placed feedback cutoff at 96 radians/see (15.3 CPS). The intercept
of the —12-db/oct ave section on the O-db axis of the loop gain curve
occurred at 57.7 radians/see and gave an acceleration-error constant of
(57.7) 2, or 3330 see-z. Experimental over-all frequent y-response curves
show a rapid falling off at frequencies above 15 cps and thus verify the
above analysis.

.1-2
4

]-250

FIG. 4.65.—Instantaneous angular velocity and acceleration of a target on a straight-line
course.

This system was designed to drive a computer shaft in synchronism
with the train angle of an antiaircraft director that was tracking an air-
plane target. The computer shaft was geared down by a factor of 360
from the motor shaft. For a horizontal deck and a straight-line constant-
velocity target, one finds

01= tan-’ “(~- ‘~), (172)
,*

where 81 = input train angle,
V~ = horizontal velocity,
Rm = minimum horizontal range,
t~ = time at crossover.

The angular velocity and angular acceleration are

(173)

(174)
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Theangular velocity reaches amaximum of V~/R~at crossover, ordI = O.
The angular acceleration reaches a maximum positive value of

at 30” before crossover and a corresponding maximum negative value at
30° after crossover. Figure 4.65 is a plot of the angular velocity and
acceleration when V~/R~ is~ radian/see (500 angular roils per second).
This corresponds to a target with Rm = 500 yd and V~ = 250 yd/sec
(450 knots). Using the values of K, and Kc previously determined, one
computes for the servo following of such a target a maximum velocity
error of 1 mil and a maximum acceleration error of 0.05 roils.



CHAPTER 5

FILTERS AND SERVO SYSTEMS WITH PULSED DATA

BY W. HUREWICZ

5.1. Introductory Remarks. —Servos considered so far in this book

operate on the basis of error data supplied continuously, in an uninter-
rupted flolv, The present chapter is concerned with servos that am
actuated by error data supplied infermitfentlg, at discrete moments
equally spaced in time. In other terms, the error data are supplied in
the form of pulses, and the servo receives no information whatsoever
about the error during the period between two consecutive pulses.

As an extremely simple example of a servo with pulsed data, let us
consider a system for which the input and the output are shaft rotations.
We denote as usual by o, and % the angles determining the position of
the shafts and suppose that the action of the servo consists in (1) measur-
ing the error E = Or— @oat specified, equally spaced moments, say once

every second, and (2) instantaneously rotating the output shaft immedi-
ately after each measurement by the angle K~, where K is a fixed positive
constant. In order to study the performance of the servo, we may sup-
pose that the system begins operating with an initial error COand that the
angle Of is kept fixed thereafter. Immediately following the first error
measurement, the error will acquire the value

Cl = (1 — K)to. (1)

Immediately after the next measurement the error will have the value

~z = (1 — 101 = (1 — K)%o. (2)

Denoting by c. the value of the error immediately after the nth measure-
ment, we have

c. = (1 — K)”@. (3)

When O < K <2, the error approaches zero with increasing n; the servo
is therefore stable. On the other hand, for K >2 the error increases
indefinitely and the servo is unstable. It is to be noted that instability
is caused in this case by overcorrection. This kind of instability is quite
typical for servos with pulsed data.

A less trivial example will be obtained by the following modifications
of the preceding example: Instead of assuming that the errors are cor-

231
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rected by instantaneous rotations of the output shaft, let us now assume
that the corrective action of the servo consists in continually exerting a
torque on the output shaft in such a fashion that the torque is always
proportional to the error found at the immediately preceding measure-
ment. The torque then remains constant during the interval between
two measurements, changing stepwise at each measurement. Again it is
clear that overcorrection and instability will occur when the corrective
torque per unit error is too large. In this case a quantitative analysis of
stability conditions is not simple, nor can it be obtained by methods used
in the theory of servos with continuous error data. The complete
analysis will be given at the end of this chapter. Another example of a
servo with pulsed data is the automatic gain control system for radar
tracking systems.

In the following we shall denote by the repetition period of a servo the
time interval T, between two consecutive moments at which error data
are received. The quantity I/T, will be called the “repetition frequency
~,” (in cycles per second). It is almost needless to mention that when l“,
is very small compared with other time constants involved in the system,
the servo can be treated to within a sufficiently good approximation as a
servo with continuous data. The need for a different treatment arises
when the length of the repetition period cannot be neglected in compari-
son with the remaining time constants of the servo.

In analogy with the procedure adopted in Chap. 2, we shall base the
theory of servos with pulsed error data on the theory of jilters with pulsed

input data; this will be the subject of the following sections.

FILTERS WITH PULSED DATA

6.2. The Weighting Sequence.—By a linear filter with pulsed data
(abbreviated in the following discussion to pulsed filter) we shall mean a
transmission device that is supplied with input data at specified equally
spaced moments and, in response, furnishes output data at the same
moments in such a way that (1) the output data depend linearly on the
input data received previously and (2) the performance of the device does
not change with time. An example of such a device is a four-terminal
passive network that receives its input voltage in the form of pulses; if we

consider the values of the voltage at the output terminals only at the
instants when a pulse is applied to the input terminals, this network can
be regarded as a filter with pulsed data.

In order to formulate mathematically the conditions 1 and 2 of the
preceding paragraph, let us assume that input data are received at the
moments t = n!f’, (n = O, i 1, *2, +3, . . ). Let x. be the value Of
the input and V. the value of the output at the time t = nT,. Condition
1 states that
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Y. = xG, kx~–k, TL =0, *1,+2,.-. ? (4)

k =’1

where the cn,kare real constants. Condition 2 states that the coefficients
c.,~ depend only on k, since x.–k must enter yn in the same way as xm_~
enters the expression for y~. Setting

Wk = C.,kl (5]

we write Eq. (4) as
.

yn =
z

Wkxm—k. (6)
k=l

In order to avoid difficulties caused by the fact that the infinite series
in the right-hand term of Eq. (6) may not converge, let us assume for the
time being that the input up to a certain moment is zero; that is, x. = O
for sufficiently large negative values of n. Then there are only a finite
number of terms in the sum which are different from zero, and the
question of convergence does not arise.

The sequence (w.) is quite analogous to the weighting function W(t)
introduced in Chap. 2; it will be called the weighting sequence of the filter.
It may be noted in passing that a pulsed filter can be regarded as a con-
tinuous filter with the weighting function

w(t) =
z

Wna(t – ?LTr), (7)

“=’1

where 6(t) denotes the Dirac delta function.
The meaning of the numbers W. will be made clearer by the following

remark. I.et, the input to the filter be a single unit pulse applied at t = O:

Zo = 1, 2%=0 for n # O. (8)
Then by Eq. (6)

y. = w. (n=l,2,3, ...). (9)

In words, the number W. represents the response to the unit pulse n
repetition periods after the pulse has been received.

If for a sufficiently large n, say for n > N, all the w“ are zero, then the
output at a given moment depends only on the N input data received
immediately preceding this moment. One can say in this case that the
filter has a‘ ‘finite memory” limited to N pieces of information.

5.3. Stability of Pulsed Filters.-In complete analogy with the con-
cept of stability developed in Chap. 2, a pulsed filter will be called stable
if to a bounded input there always corresponds a bounded output. We
shall see that a neazssary and wq?kient condition for stability is the absolute
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convergence: of

of the filter.
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?the series ~ w., where (w.) is the weighting sequence
~=1

.

We first prove the sufficiency. Suppose that the sum ~11 w.
n=l

is finite, and let A denote its value. Let the input sequence (z.) be
bounded; that is, for a certain positive number M,

Ixn[ < M (lo)

for every integer n. From Eq. (6) we obtain

.

IY.I < ~ Jflwkl = MA. (11)

k=l

The output is therefore bounded by the number MA.

In order to prove the necessity of the condition let us assume that the
filter is stable. It was remarked in the preceding section that the weight-
ing sequence (w.) can be regarded as the output sequence corresponding
to the unit-pulse input. Hence (by the definition of stability) the
sequence (UAJis bounded. Let M be a positive number such that

[Wnl< M (n=l,2,3, ..). (12)

Suppose now that the series ~ ,w., diverges. There certainly exists
n=l

a positive integer N1 such that

N,

z
Iwnl >1. (13)

n=l

We further select an integer Nz > NI such that

N,– N,

z
Iwnl > MN, + 2. (14)

~=1

The existence of such an integer follows from the divergence of the series.
We continue the process ad infinitum. After having selected the integers
N,, N,, . . . , Ni_I, we choose an integer Ni > iV~-1 satisfying

. .
1A series

z
w. is said to be absolutely convergent if

I
Iwnl < m.

n-l ~=1



SEC. 5.3] STABILITY OF PULSED FILTERS 235 I

(15)

We now define a bounded input sequence as follows:

(16)

x. =0 for n s O,
x. = sgn w~,–n1 forl~n<N1,
xti = sgn wN,_rI for NI s n < Nt,

. . . . . . . . . .

x. = sgn w~~_. for N<, s n < N,, I

Let (v*) be the corresponding output sequence. By Eq. (6)
N.–l

yN, =
2

wkz~i–k. (17)

k=l

For 1 s k s Ni – N~_,, the kth term in this ‘sum has (in accordance with
the definition of the numbers G) the value Iw,l. Then by Eq. (15)

N,– N,.,

2
wkx.v,_~> MN,-I + i. (18)

k=l

On the other hand, for any n we have lw~l < M, and hence
N,–1

2
w,x.v,_k > – lfN,_,, (19)

~=N,–N,-,~1

Adding the last two inequalities, \ve obtain

y.v, > i. (20)

Thus (yn) is an unbounded sequence, contrary to the assumption that the
filter is stable. This concludes the proof.

An important property of stable filters is the existence of a steady-
state response to a step-function input. Let a unit-step function be
applied to the filter at the time t = O. The input z. has then the value
zero for n < 0 and the value one for n a O For the corresponding out-
put data we have, by Eq. (6),

n

z
ym = wk. (21)

k=l
.

Since the absolute convergence of the series
2

W. implies ordinary con-
n=l

‘ The symbol “sgn b“ denotesthe number that is Oif b = O, is 1 if b >0, and
is–lifb <O.
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vergence, the output y. in Eq. (21) approaches with increasing n the
finite value

.

z
~ = wk. (22)

k-l

The constant .S represents the steady-state output corresponding to a
unit-step input. It should be remarked that the steady-state response S

may exist even for an unstable filter, since the series
2

w. may converge

without converging absolutely.
So far we have always assumed that the input z. is zero up to a certain

moment. In the case of a stable filter the series in the rightihand term
of Eq. (6) converges for any bounded infinite sequence (z.). This follows
from the fact that if M is an upper bound for the absolute values lzm1,the

convergent series ~ 1-1”M w M a majorant series for the series in Eq. (6);
n=l

the output sequence is well defined even if G is different from zero for
arbitrarily large negative values of n. In the case of stable filters one
may therefore speak of an output for a bounded input which has been
“going on forever.” In particular, the response to the constant unit
input z. = 1 (n = O, ~ 1, +2, “ . . ) is the constant output

(23)

which is, of course, equal to the steady-state response to the unit-step
input.

We shall call a filter normalized if

.

zw. =1.

n=l

(24)

In this case a constant input is faithfully reproduced by the filter, with-
out either attenuation or amplification. In the case of a normalized
filter, each of the output data Y- can be regarded as a weighted average of
previously applied input data x*1, x-a, x-a, . . . .

5.4. Sinusoidal Sequences.—Let (z.) (n = O, +1, +2, “ “ . ) be a
two-sided discrete sequence of data observed at equally spaced moments
nT, where T, is fixed once for all. (In this section it is not necessary to
assume that the members of the sequence are input data of a filter.)
We shall call (x.) a sinusoidal sequence with a frequency of w ra&ans per
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second or j = W/2Wcps if

z. = A sin (uT, + O) = A sin (2irnfT, + o), (25)

where A and @ (’‘amplitude” and ‘‘ phase, ” respectively) are constants
and A > 0.

We observe first of all that unlike the continuous function, the se-
quence of Eq. (25) is not periodic unless the frequencies j and j. = I/T,
are commensurable.’

We further note that the amplitude A does not necessarily represent
the maximum value attained by the members of the sequence. 2 For
instance, if f/j, = %and @ = ~/4~ach number in the sequence of Eq. (25)
has one of the two values + (~2/2)A = ~ 0.7A. If, however, f and j,
are incommensurable, the amplitude A is always the upper bound
(although not necessarily the maximum) of the sequence; that is, there
are members of the sequence arbitrarily near to but less than A.

The following remark is of the greatest importance: The sequence of
Eq. (25) remains unchanged if the frequency j is replaced by the frequency

.f + k.f,, where k is an integer. No distinction can be made between two

frequencies that difler by an integral multiple oj the repetition jrequency.

For instance, a sinusoidal sequence of frequency j, obviously consists of a
single number repeated infinitely many times and is hence the same as a
sequence of the frequency zero. It is clear from the foregoing that by
varying j between O and j, the entire range of frequencies is covered.

As a matter of fact, every sinusoidal sequence can be written as a
sequence with the jrequency not exceeding one-halj of the repetition jre-

quency. In order to show this, let us consider two frequencies j and j’,
such that f + j’ = f,; such frequencies will be called complementary to
each other. Clearly one of these frequencies, say f’, is S j,/2. Hence
it is sufficient to demonstrate that every sinusoidal sequence with the
frequency j can also be written as a sinusoidal sequence with the fre-
quency j’. NOW

A sin (2@T, + O) = A sin (– 2rnj’T, + O)
= A sin (2rnj’T, + T – o). (26)

Thus a sinusoidal sequence with the frequency .f can also be represented
as a sequence with the frequency j’, with the phase changed from b to
(lr – @).

As in the discussion of continuous sinusoidal data, it is convenient to

1By a periodic sequence is meant a sequence such that for a certain fixed m,
zn+~ = Zmfor all integers n. A sinusoidal sequence always belongs to the class of
sequences called ‘(almost periodic” regardless of whether or not it is periodic.

2 It is, of course, clear that no member of the sequence can exceed A.
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substitute for thesequence of Eq. (25) a sequence of complex numbers,

where c is a complex constant. With suitably selected c the real parts of
the numbers U- are the members of the sequence of Eq. (25). The
sequence (27) can be written in an even simpler way if we make the
substitution

~ = @T,. (28)

it now becomes

0“ = Cz”. (29)

In thk representation z can be an arbitrary complex number of
absolute value 1. Each jrequency w is represen~ed by a dejinite point z oj

the unit circle; moreover, equivalent frequencies (that is, frequencies
differing by multiples of the repetition frequency) are represented by
the same point on the unit circle. (Hence the advantage of using a circle
instead of a straight line for representing the continuum of frequencies.)
The frequency co = Ocorresponds to the number z = 1, and the frequency
equal to one-half of the repetition frequency corresponds to the point
z = —1, whith is one-half of the circumference away from the point
z = 1. The frequency equal to one-fourth of the repetition frequency
is represented by the point z = j, which is one-fourth of the total cir-
cumference away from the reference point z = 1, and so on. When u
is varied from O to 27rf,, the point z makes a complete turn around the
unit circle in the counterclockwise direction. It should be noted that
two points on the unit circle symmetric with respect tIOthe real axis (or,
what amounts to the same thing, two conjugate complex numbers of
absolute value 1) represent complementary frequencies, which, as was
pointed out before, are not essentially different. Hence the points of
the upper (or the lower) semicircle, including + 1 and – 1, suffice to
represent the entire range of frequencies.

5.5. Filter Response to a Sinusoidal Input.—Since a sinusoidal
sequence is necessarily bounded, it follows that a sinusoidal sequence of
data applied as the input to a stalie filter will produce a well-defined
output. In computing the output it is convenient to replace the sequence
in Eq. (25) by an imaginary input sequence of the type in Eq. (27) or,
equivalently, by a sequence of the type in Eq. (29). The “ response” to
such a complex input sequence is a sequence of complex output data with
real parts representing the output data corresponding to the real parts of
the input data.

From the input sequence

~n = czn = Cemwi”r (n=o, *l, i-2,.”.) (29)
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one obtains the output sequence

. .

i,, = zc%>~z“-k = Cz’$ 2U)kz-k = Cyz”, (30)
k=l k=,

where the complex number

y= t“’’z-k = 2W’’-’”’”
(31)

k=l k=l

depends only on the frequency u. The sequence (fn)determined byEq.
(30)isof exactly thesame form asthesequence in Eq. (29). Translated
into “real” terminology, this yields the fundamental result that (in
complete analogy }vith the theory of continuous filters) the response ofa

stable filter 10 a sinusoidal input isa%”nusoidal output ojthe same frequency.

The change in the amplitude and phase is obtained in a familiar way
from the complex number Y: The ratio of the amplitude of the output to
that of the input is the absolute value of Y; the difference between the
phase of the output and the phase of the input isthe angular coordinate
ofw. Oneseesthatforz = l,thatis, fortheinput frequency zero, the
response factor is Y = WI + WZ+ WS+ . “ . ; whereas for z = —1,
that is, fortheinput frequenc~' ~j,, theresponse factor assumes the value
Y=–w1+w2–~3 +.... Since the latter value is always a real
number, we are led to the following important conclusion: The phase shift

at the input frequency oj +j, is either 0° or 180°.
Example .—Let W. = K“, where K is a real constant and ]K] < 1.

For the frequency-response ratio Y we obtain from Eq. (31)

.

y= 2 ~nz-n – ~
K K

Z—K= eWTr _ K = cos uT, — K + j sin ~T,
~ (32)

n=”l

The ratio of output amplitude to input amplitude is

The output lags behind the input in phase by an angle

~ = tan-l sin uT,,

cos uT, — K.
(34)

Regarded as a function of the frequency a, Y is, of course, periodic
with the period %/T, = %j,, and according to Eq. (31) the weighting
numbers W. are coefficients in the Fourier expansion of Y as a function of
W. This implies incidentally that the numbers w. (and consequently the
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performance of the filter) are completely determined by its frequency
response.

Before concluding this section, let us consider a bounded input that
becomes sinusoidal only from a certain moment on and is completely
arbitrary up to this moment (subject merely to the condition of bounded-
ness). Suppose, for instance, that Eq. (25) is satisfied only for n z O
whereas, if n < 0, the numbers G form an arbitrary bounded sequence.
Let ymbe the output in the present case, and let (ysn) denote the sinusoidal
response to the sequence that satisfies Eq. (25) for all positive and
negative values of n. By using the absolute convergence of the series

2
W. it is easily shown that

lim (y. – y,.) = O. (35)
n- M

In other terms, the sequence (y,.) represents the steady-state ozdput cor-
responding to an input that is sinusoidal only after a certain moment,
without having been sinusoidal “ forever. ” The dtierence Y. — g..
represents the transient part of the output, which gradually disappears.

5.6. The Transfer Function of a Pulsed Filter.—In the preceding
section the quantity

was considered
formal way we

.

y= zWkz+ (31)
k=l

only for values z on the unit circle Izl = 1. In a purely
can consider Y as being defined for any complex number

.
z for which the power series

I
~k~~ converges; for any such number

k=l
the sequence Yz” (n = O, t 1, ~ 2, +3, “ “ ) can be regarded (again
from a purely formal point of view) as the output sequence that corres-
ponds by Eq. (6) to the input sequencel z“ (n = 0, f 1, t 2, +3, “ ~ ).
These formal considerations are valid even if the filter is unstable.

It is well known from the elements of function theoryz that the series
.

zwkz–kconverges for ]ZI > R and diverges for IzI < R, where the con-
k=l
vergence radius of the series R is the upper limit of the sequence

lwm]’/n(n = 1,2, . . . ).

1We shall speak in this case of the “output sequence” despite the fact that the
sequence z is unbounded unless IzI = 1 (previously we agreed to consider output
sequences only in the case of bounded input sequences).

2See, for instance, E. C, Titchmarsh, Tb Z’heory of Frmdions, Oxford, New York,
1932.
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In extreme cases R may have the value O, which means that the series
converges everywhere except at the point z = O, or R may have the value
cc, which means that the series diverges everywhere except at the point
Z=m. In the following we shall always assume that R < m or, equiv-
alently, that a finite positive number M can be determined in such a way
that

Iwnl s Mn (36)

for every n. Observe that this condition is automatically satisfied if
the weighting sequence is bounded and, in particular, if the filter is
stable. 1

For Izl > R the quantity Y is an analytic function of z with the value
zero at z= m. By using the process of analytic continuation one
may be able to assign values of Y even to points with Izl < R (for such

points w will not be represented by the power series
2

to~z-~), The
.k=l

complete analytic function obtained by the process of analytic continua-
tion from the power series may very well turn out to be a multivalued
function; for example, setting w. = ( – 1)”/n, we obtain

Y(z) = – in (1 + z-’),

with infinitely many values assigned to each z.
The transfer function of a filter is defined as follows: Given a jilter

(stable or unstable) with the weighting sequence (w,,), the junction oj the

complex variable z de$ned by
.

y(z) = z?-vkz-k (37)
k=l

and ezten.ded by the process Oj adytical continuation is called the iransjer

junction oj the jilter.
Example 1.—Let W%= K“, where K is an arbitrary real constant.

Then (see the example at the end of the preceding section)

y(z) = +. (38)

We observe that Y(z) is defined over the entire complex plane
[if the value m is included among the values of Y(z)], despite the

I It has been shown in Sec. 5.3 that stability implies the absolute convergence of
.

the sum
2

W. and, consequently, the boundednem of the sequence (w-).
n-l

s Titchmarsh, op. cit.
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fact that the power series by which Y is defined converges only
for Izl > IKI. The point z = K is a pole of the function Y(z);
at all the remaining points of the plane Y(z) is regular.

Example 2.—Let w. = l/n!. Then

Y(z) = e“ – 1. (39)

In this case Y(z) has an essential singularity at z = O.

Exampte 3.—Consider a filter such that w. = O for sufficiently large
n, say for n > nO. Then

y (z) = P (2)2-””, (40)

where P(z) is a polynomial in z; conversely, when Y(z) is of this
form, then all sufficiently high terms in the weighting sequence
vanish and the filter has a ‘(finite memory. ”

It is worth remarking that the substitution

z = eTr P (41)

transforms the function Y(z) into the function of p defined by the series
.

.2w~e–~’rr. This series is quite analogous to the I,aplace integral
k=l

1
‘Mdt W(t)e–@, which served to define the transfer function of a “ con-o–

tinuous” filter in terms of its weighting function W((). In the case of
pulsed servos it is much more convenient to use the variable z than p,
since in most important cases the function Y(z) turns out to be a rational

junction of Z, whereas w, regarded as a function of p, can never be rational
or even algebraic. This last remark follolvs from the fact that z and
consequent y Y are periodic in p with the imaginary period 2~j/ T,.

5.7. Stability of a Pulsed Filter, and the Singular Points of Its Trans-
fer Function.—This section relates only to filters with single-valued
transfer functions. This restriction is made to atioid terminological
complications; the following discussion could easily be extended to the
case of multivalued transfer functions by substituting for the complex
plane the Riemann surfacel determined by the transfer function.

With the assumption that Y is single valued, it is clear that the weight-
ing sequence is completely determined by the transfer function Y (z),
since the numbers w. are coefficients in the Taylor expansion of Y(z)
at the point z = cc. It follows that all the properties of the filter are
determined by the function Y(z). The most important property of a
filter is its stability or lack of stability. We shall now prove that the
stability properties of a pulsed filter, like those of continuous filters,
depend on the location of the singular points of its transfer function.

1E, C. Titchmarsh, The Theory of Functions, Oxforal, hTewYork, 1932.
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We consider fist a stable filter. According to Sec. 5.3, the series
. .

I wh converges absolutely. In other worda, the series
z

wkz–k
k-1 k=l
converges for z = 1. Hence the convergence radius R must be ~ 1.
The function Y(z) is regular for Iz] > R and afortiori for Izl > 1 (includ-
ing z = ~ ); all the singularities of Y(z) are therefore contained inside
the unit circle or on its boundary.

.

On the other hand, if the filter is unstable, then the series
z

wkz–k
k=l

doesnot converge absolutely for z = 1, and hence R z 1. We now recall
that by a fundamental theorem of function theory, there is at least one
singular point (which may be either a pole or an essential singularity of
Y) on the boundary Iz[ = R of the convergence circle. Since R z 1, this
point is located either in the exterior or on the boundary of the unit circle.

Combining these remarks, we obtain the following fundamental
theorem: If all the singular points of the transfer junction are located inside

the unit circle, the jilter is stable. Zj at least one singular point lies outk-icfe

the unit circle, the jilter is unstable.

It should be observed that there is one ambiguous case which is not
covered by the preceding theorem, the case of a transfer function with all
singularities inside or on the boundary of the unit circle and at least one
singularity located exactly on the boundary. In this case the filter may
be stable or unstable. From the physical point of view such a filter
should be regarded as unstable, since a very small change in the physical
constants of the filter may throw the critical singularity from the bound-
ary into the exterior of the unit circle, causing actual instability. In
this connection we may further remark that for a stable filter the position
of the singularities of the transfer function indicates the degree of stabil-
ity; the further the singularities are from the boundary of the unit circle
the more stable is the filter.

The above theorem can be illustrated by the example w. = K“.

We have found for this case

y(z) = &K. (38)

The only singularity of Y(z) is the point z = K, and the theorem indicates
stability for IK I < 1 and instabilityy for IK I > 1. The same result fol-
10WSimmediately from the definition of stability or from the result of
Sec. 5.3.

In the following sections we shall deal for the most part with filters
with transfer functions that are rational functions of z:

I Since Y(z) is not a constant, there must be at lea6t one singular point,
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(42)

where P(z) and Q(z) are polynomials’ that may be assumed to be without
common factors. The singularities of Y(z) are the roots of the algebraic
equation

Q(z) = 0. (43)

The filter is stable if all the roots of this equation are contained inside the
unit circle. For example, the filter with the transfer function

y(z) = --+
22 — 7JZ

is stable, whereas the filter with the transfer function

1
Y (z) ‘ z~ – 22

(44)

(45)

is unstable.
Comparing the result of this section with the theory developed in

Chap. 2, we recognized that in our present considerations the unit circle
plays the role that the half plane to the left of the imaginary axis played
in the theory of continuous filters. This is in accordance with the fact
that the substitution

~ = ~T,v (41)

mentioned at the end of the preceding section transforms the unit circle
of the z-plane into the left half plane of the p-plane.

5.8. The Transfer Function Interpreted as the Ratio of Generating
Functions.—It was shown in Cha~. 2 that the transfer function of a
continuous filter can be interpreted as the ratio of the Laplace transform
of the output to the Laplace transform of the input. In order to gain an
analogous interpretation for transfer functions of pulsed filters, let us
consider an input sequence (x”) with X* = Ofor sufficiently large negative
values of n. Suppose, furthermore, that there exists a constant M >0
such that

X. < M“ (46)

for every n (this condition is certainly satisfied if the input is bounded).
Then the function

.

91(2) = z Xkz–k

k=–.

(47)

of the complex variable z is defined when IzI is sufficiently large. We

10bserve that Q(z) must be of higher degree than P(z), since by its definition the
transfer function has the value zero at z = m.
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shall call this function the generating junction of the input. In the same
way we associate with the output (Y.) the function

.

go(z) = 2 ykz (48)

k=–-

called the generating function of the output. We now obtain, using
Eq. (6),

9+)Y(Z) = 2‘+w’z-k=2‘-’’2W’X=’
“=—. k=l ,,=_m k=l

.
——“z ynz–” = go(z) 1. (49)

,,=—m

It follows that the transfer function Y(z) can be expressed as the ratio

y(z) = g+).
g,(z)

(50)

This result will be useful in the theory of pulsed servos. It cm also
be applied to the treatment of two filters in series, where the output of the
first filter is the input of the second filter. In such cases the transjer

junction oj the total jilter is the product oj the transjer junctions oj its com-

ponents. Let g,(z), go(z), and g’(z) be the generating functions, respec-
tively, of the input to the total filter, the output of the total filter, and
the output of the first component; then we can write

go(z) = 9&) 9’(Z).
9{(Z) g’(z) g,(z)

(51)

This proves our assertion, since by the above theorem the two factors in
the right-hand term are the transfer functions of the component filters.

FILTERS WITH CLAMPING

5.9. The Concept of Clamping.—Let us suppose that pulsed data
measured at the moments,t = O, 2’,, 22’,, . . . , are fed into a device that
yields an output with value at any time equal to the values of the input
at the immediately preceding pulse. Electrical circuits that perform this
function are often referred to as ‘‘ clamping circuits”; we shall speak of
their action as “clamping.”

Denoting by Z. the value of the pulsed input to a clamping circuit at

1This shows, incirfmrtnll.v, that the series defining go(z) rmnvcrgcs in the region in
which the series defining gl(z) and Y(z) m! both mnwwrgc]lt.
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the time t= nT, and by x(t)the value of the output at the time t, we
have

z (t) = x. for nTr < t s (n + I) T,. (52)

The function z(t) changes discontinuously at the moments t = nT,, and
its graph is of staircase form. It will be noted that the value of z(t)at
the discontinuityy point nT, has been set equal to z(nT, – O) = X-L

[and not to z(nT, + O) = z.]. This is, of course, an arbitrary convention.
Suppose now that the output z(t) of the clamping device is fed in

turn into a linear filter of the continuous type dealt with in earlier chap-
ters. Let y(t) be the output of this filter, and let y- = y(rzT,). We can
regard the combination of filter and clamping device as a single puked
jilter transforming the input data Z. into the output data y.. An example
of such a filter with clamping is the so-called ‘(boxcar” detector used in
radar devices. Filters with clamping occur in many applications.

In the following discussion we shall let Y(p) be the transfer function
of a continuous filter, to distinguish it from the transfer function y(z)
of a pulsed filter. The question arises: How may one compute the
transfer function Y(z) of the pulsed filter obtained by combining a con-
tinuous filter with a storage device as described above? Since the
behavior of the pulsed filter is completely determined by the nature of the
continuous filter and the time constant T, of the clamping device, it
follows that the transfer function Y(z) is completely determined by the
function Y(p) and the time constant T,. In stuciying the problem of
computing the function Y(z) we shall confine ourselves to cases in which
Y(p) is a mtionaljurwtion, that is, to the case of continuous filters described
by a finite system of linear differential equations with constant coef-
ficients. Such a filter can always be visualized as an RLC-network.

6.10. Transier Functions of Some Special Filters with Clamphg.—
Before passing to the general treatment of filters with clamping, we shall
consider some important special cases.

Example 1.—Let Y(p) be constant;

Y(p) = K. (53)

The action of the filter without the storage device consists merely in
multiplying the input by the constant K. For pulsed input and output
we have

Y. = Kz(nT,) = Kz._,. (54)

Hence the pulsed filter has the weighting sequence

WI = K, Wz = o, ‘W3 =0,..., (55)

and the transfer function is

y(z) = Kz-’. (56)
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Example 2.—Let

Y(p) = +aJ (57)

where a and B are constants. If the filter is stable, then a <0. A
concrete realization of a filter with transfer functions of this type is the
simple RC-network of Fig. 51. The weighting function corresponding
to the transfer functions Y(p), that is, the function with Laplace trans-
form equal to Y(p), is R

W’(t) = /3e”’. (58) ,nPUt
o

output
Let the pulsed input be the unit pulse ‘o]iageTc voltage

o A o
Zo = 1, Zn=o for n # O. (59) FIG,5.1.—SimpleItC.network.

After having been passed through the storage device, this input becomes

x(t) = 1 for O<t~Z’,, z(t) = o for t s O or t > T,. (60)

The continuous output of the filter is’

/

.

\

t
y(t) = d, W(T)z(t – T) = d. W(T). (61)

o– 1–T,

The values of y(t) for t= T,, 2T,, 3T,, . . . , constitute the pulsed out-
put sequence yl, y2, y3, - “ “ . As has been shown (see Sec. 5.2), the
output sequence of the pulsed filter for a unit-pulse input is identical
with the weighting sequence (w.). Hence

\

nTr

/

nT,
~m = W(T) d, = @ear d, = ~ (en”’ –

(n–l)T,
l)e’w’’n~. (62)

(n- I)?’r

From this result we obtain for the transfer function Y(z) of the pulsed
filter

m .

y(z) = z :(~k~k c – ea~~ — l)z–l
2

(emrz-l)k

k=l k=O

=P; (e”’, – l)z-’(l – earvr’)-’, (63)

or in more symmetric form

y(z) = – : g. (64)

This formula is correct even for a = O, provided the factor (1 – e-”’)/a
in Eq. (64) is replaced by its limiting value as a -0, namely, —T,;

hence corresponding to Y(P) = B/P, one has Y(z) = OT~/(Z – 1). Let

us remark further that Example 1 discussed above can be treated as the

lFor7<0 weeet W(7) =0.



248 FILTERS AND SERVO SYSTEMS WITH PULSED DATA [SEC.5.10

limiting case of Example 2 for a and B increasing “indefinitely, with con-
stant ratio ~la.

Suppose now that a <0 and consequently emT’<1. The filter is
then stable both with and without the storage device. Suppose, in
addition, that the filter is normalized; that is, - a = B, and consequently
Y(1) = Y(0) = 1. It is quite instructive to consider the jrequenc~
response of the pulsed filter, as thus restricted, for fixed filtering constant
a and for various values of the clamping time constant Z’,.

According to Sees. 5.5 and 5.6, the frequency response at frequency
a is obtained from the values of Y(z) for z = e~”‘“. Now it can easily be
shown that as z moves on the unit circle, the point Y(z) given by Eq.
(64) moves on a circle C which has its center on the real axis and cuts that
axis at the points

y(1) = 1,

y(. ~) . _ !S

1 + ea~r ()
= tanh $ (65)

(see Fig. 5.2). When the point z moves clockwise, the point y(z) moves
counterclockwise. A complete 360° rotation of z corresponds to a com-

plete 360° rotation of Y(z); a
rotation of 180° of z from z = 1 to
z = —1 corresponds to a 180’

()
aTr

tan h ~
rotation of Y(z) from Y(l) = 1 to

04 ~ y(–1). If we denote the point
1 w(e~”’r) by P, then the length of

the segment OP gives the attenua-
tion factor and the angle XOP

FXQ. 5.2.—Transfer function 10CUEfor
gives the phase shift correspond-

Example2. ing to the frequency W. It is
clear from Fi~. 5.2 that the

attenuation factor has its smallest value, tanh (a 2’,/2), for uT, = m,that
is, for u equal to-one half of the repetition frequency. The phase shift
at this frequency is 180°.

Suppose now that T, is very small compared with the time constant
– (l/a) of the filter. Then the circle C is practically tangent to the
imaginary axis at the origin. In this limiting position C coincides with
the 10CUSof the points [– a/(ju – a)] with ( – co < ~ < co), which reP-
resent the frequency response of the filter without the storage device. It
is, of course, to be expected that”for very small T, the introduction of the
storage device cannot make any appreciable difference.

If the time constant T, is increased, the center of the circle C moves
nearer and nearer to the origin; there is less and less attenuation. In
the limit case aT, = — w the circle C coincides with the unit circles
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around the origin. By Eq. (64) the transfer function in this case becomes
y(z) = z_’, which is the same as in Example 1 with K = 1. This is
again evident a priori, since when 2’, is large, the filter remembers only
the last piece of information supplied and consequently y. is determined
by zfi_, alone.

Example 3,—Let

(66)

where n is an arbitrary positive integer. The corresponding weighting

is obtained by applying the operator [l/(n — 1) !](dn–l/da”–l) to the
weighting function of Example 2. By going through all the steps of the
computation of Example 2, one sees very easily that the resulting transfer
function Y(z) is obtained by applying the same operator to the transfer
function computed in Example 2. Hence, by Eq. (64),

(68)

For example, if v = 2,

5.11. Transfer Function of a Filter with Clamping; Stability. -We
are now prepared to compute the transfer function when Y(p) is an
arbitrarv rational function..

Y(p) = ~, (70)

where N(p) and D(i) are polynomials in p without common factors and
the degree of the numerator does not exceed the degree of the denomina-
tor. Let al, aa, . , G, be the different zeros of the denominator,
that is, the different poles of Y(p). We can then decompose Y(p) into
a finite number of simple partial fractions

Y(p) = K +
~

~ks
,, (p – ak)”-

(71)

Using the same methods as above, we find that the transfer function
w(z) is obtained by adding up the corresponding expressions as given by
Eq. (68). That is,
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y(z) = : + 2 1—c
(

_ ~~. 1 – e“’”
(s – 1)! l%;-’ ffk Z — eak Tr )

(72)
k,,

(The fact that the numbers ak and pk. are not necessarily real has, of
course, no effect on the formal computations. )

It should be noted that Y(z) is a rational function of z, the poles of
which, aside from a possible pole at z = 0,1 are at the pointsz Zk = e“~~r.
The degree of the denominator of Y(z) cannot exceed the degree of the
denominator of Y(p) by more than 1.

When Y(p) has no multiple poles, the decomposition of Y(p) into

partial fractions assumes the simpler form

z ~kY(p)=K+ —
~p–ak’

(73)

and Eq. (72) simplifies to

y(z) = : +
2

_ & 1 – euk’r
ffk z — e“hrr (74)

k
Example 1.—Let

Y(P) =*l=l– L.

One obtains
p+l

y(z) = : – ::::::.

(75)

(76)

Example 2.—Consider next a resonant filter. Denoting the resonant
frequency of the filter by w., we can write

(77)

In order to compute Y(z) we first decompose Y(p) into partial ●

fractions:

( )Y(p)=J$ *n –-L_. (78)

Applying Eq. (74), one obtains

= (1 – Cos %2’,)
1+2

1 + 22 – 22 Cos @.T,”
1This pole occurs if and only if N(p) has the me degree as D(p).
z Obseme that two different poles al, al of Y yield the earne pole of Y if

aI — az = %kj/T., wherek is sn integer.
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Suppose first that u.T, is not an integral multiple of m; the resonant
frequency is then not an integral multiple of half of the repetition
frequency. The formula above shows Y(e)”.rr) = cc and Y( – 1) = ().
This means that the filter with the storage device still resonates at
the frequency W. and in addition gives complete attenuation at one-
half of the repetition frequency. The attenuation factor of the
filter operating without the storage device is, of course, different
from zero for all frequencies. In case unT, = kr, where k is an odd
integer, one has

y(z) = + (80)

The pulsed filter resonates in this case at half of the repetition
frequency. All frequencies except the zero frequency are amplified,
since 12/(2 + 1)1 > 1 when Izl = 1 and z # 1. Suppose finally
that unT, = lmr, where k is an even number. In this case

y(z) = 1 for z = 1, y(z) = o for z # 1. (81)

This means that the filter rejects all the frequencies except the zero
frequency. In an actual physical system (which can only approxi-
mate this ideal case) such a pulsed filter will act as a low-pass
filter with an extremely sharp cutoff at a low frequency.

We conclude this section with the following important remark. We
have seen that to every pole a of the function Y(p) corresponds a pole
euT~of the function Y(z). If the real part of a is negative, the point
ea~, is inside the ufit circle, and conversely. Recalling the stability

criteria for continuous and discontinuous filters, we conclude that if a

filter is stable without the storage device, it will remain stable with the

storage device, and conversely.

6.12. Simplified Transfer Functions for Icw2’,1>> 1.—The expressions

occurring on the right in Ilqs. (72) and (74) can be rewritten as follows:

_ pk, 1 – eak’, @k,— —
~kz_eak Tr—z._l akT,

(82)

T, eakT, – 1 – ‘k

Setting
akT,

‘Yk = ;=~lJ (83)

and introducing the new variable

z—1
p=~,

-,
one can write Eq. (72) as

(84)

K
—– +

~
—e 1 LL.

Y(z) = Y(I + ‘*P) = 1 + TrP ~, (s – 1)! aaj-’ ‘y,p – a,
~ (85)
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It should be noted that the new variable p has the dimension of frequency
whereas z was dimensionless. Observe also that by Eq. (84) the unit
circle of the z-plane is transformed into the circle C of the p-plane with
center at the point p = —I/T, = —jr and radius .f,; this circle is tangent
to the imaginary axis at the origin (see Fig. 53).

Let us now make the following assumptions:

1. Y( co) = O; that is, A’(p) has lower degree than D(p).

2. All the numbers la,z’,1 corresponding to different poles of Y(p)
are very small compared with 1.

Physically, Assumption 2 means that all the time constants involved
in our filter are large compared with the repetition period !7’,of the pulses.
It follows from Eq. (83) that under this condition all the numbers ~~
are close to 1 and their successive derivatives (13S7~)/(&@ are close to
zero. Thus, instead of the exact Eq. (85) one may use the approximate
formulal

or
y(z) = Y(I + T,p) = Y(p). (87)

If the above assumptions are valid, then the transjer junction oj the

pulsed jilter can be identified with the transjer junciion oj the cent inuous

e

jilter by introduction oj the variable p defined by
c Eq. (84). This result is of great practical im-

P portance, since, under the conditions specified
above, the transfer function of the pulsed filterw
can be obtained immediately from the function

-fr ‘ Y(p); one thus avoids the tedious process of de-
composing Y(p) into partial fractions, which
involves the solution of the algebraical equa-
tion D(p) = O. When using this simplified

p-plane formula one fact should always be kept in
FIG. 53.-The cucle C’. mind: Although the frequency response of the

continuous filter is obtained from the values of Y(p) on the imaginary
axis, the frequency response of the pulsed filter is computed from the
values of Y(p) along the circle C. In particular, the response corre-
sponding to a given frequency u s mj, is approximately determined by
the value of Y(p) at a point P of the circle C, at a linear distance u from
the origin, measured counterclockwise along the circle. If u is small
compared with the repetition frequency j,, then the point P is very close

1Since Y( ~ ) = O, the constant term in the decomposition of Y(p) in partial
fractions vanishes,
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to the point jw on the imaginary axis and can be identified with it.
This is in accord with the expectation that for frequencies that are low
compared with the repetition frequency there should be practically no
difference between the responses of the filter with or without storage
device. It would, however, be entirely wrong to identify the two
responses for high frequencies. For instance, the response of the con-
tinuous filter to the frequency u = mf,, which is one-half of the repetition
frequency, is determined by the value Y(m~f,), whereas the response of the
pulsed filter to the same frequency is (approximately) determined by
the value Y( – 2j,). This latter value is always real, corresponding to
a phase shift of either 0° or 180° (see Sec. 5.5).

The formula of Eq. (87) can be used only when T. is small compared
with all the time constants of the filter. One might object that this con-
dition can never be satisfied in a concrete physical device, since there
always remains the possibility of small unpredictable time lags which may
be comparable to the time period T, or even smaller. In order to meet
this objection, let us consider the simplest filter with a single time con-

stant T,, having the transfer function

(88)

Suppose now that this filter has an additional time lag T, which is small
compared with !7’1. The exact transfer function is then

1 1

(

T, T,
Y(P) = AI T~I = T, – T, TIP + 1

)
– — (89)

T,p + 1

By Eq. (85) we have, exactly,

where 1~1– 1I is a small number if the ratio T,/7’l is small. The num-

ber Y* is not necessarily close to 1. The second term in the expression
for Y(z) is, however, very small compared with the first term because of
the small coefficient Tz/(Tl – Tz); it therefore does not make any
appreciable difference whether this term is left unchanged, simplified by
replacing ~Z by 1, or left out altogether. The same reasoning can be
applied in the general case, where it leads to the conclusion that the
simplified Eq. (87) can be applied without regard for ‘~parasitic” time
lags, provided the “essential” time constants are large compared with
T,.

5.13. Filters with Switches. -Instead of assuming a storage device
that holds the pulsed-input value for the entire repetition period T,, we

could consider a storage device that, retains the pulse during only a frac-
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tion of the repetition period. It is not hard to derive in this more gen-
eral case formulas for the transfer function Y(z) that are analogous to
those derived in Sees. 5“10 through 5.12. We shall treat in some detail
only the extreme case in which the pulse is held for a period T, small
compared with the repetition period T,. Such a system can best be
visualized as a filter fed by a continuous input and supplied with a switch

that is closed only during very short periods of length T, following each
of the moments t = O, T,, 2T,, . . . .

During the short period T, we may regard as constant the finite
weighting function W(t) of the filter without the switch. When the
switch is in operation, the input received at the time t = O has the weight
7’,W(nTr) at the time t = nT,. In other terms, the filter with the switch,
regarded as a pulsed filter, has the weighting sequence

W. = T, IV(nT,) (91)
and the transfer function

.

y(z) = l“,
s

W’(nT,)@. (92)
~=1

For example, if

Y(p) = *a! W(t) = Bed,

we have
m

(93)

In the more general case when Y(p) is a rational transfer function satisfy-
ing Y( cc ) = O, we have, in the notation of Eq. (72),

z T. r3’-1 /3k8em’Tr
y(z) = — —

(s – 1)! ikl~-’ z – e.mp”
k,s

(95)

If all the numbers akT, are small, we can replace the exponential ec’~r in
this formula by the approximation (1 + akT,); with the substitution of
Eq. (84) this yields, after obvious simplifications, the approximate
formula

y(z) = y(l + T,p) = # Y(p). (96)
1’

Except for the factor T,/T, this is the same as Eq. (87).

SERVOS WITH PULSED INPUT

5.14. General Theory of Pulsed Servos: Feedback Transfer Function,
Stability.-In a pulsed servo the input and the output are considered
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only at discrete tlmest = nl’’,(n = 0, ~1, t2, o “ A ). Weshall denote
by & the input and by f30.the output at the time t= nT,- The servo
output is activated by the pulsed error

E. = 81. — eon. (97)

As in the theory of continuous servos, we shall assume that the output
sequence (oOm)is related to the error sequence (cm)as output and input of a
linear filter. In this case, however, the filter will be a pulsed filter. The
transfer function Y(z) of thk filter will be called the jeedbaclc transfe~

junction of the servo. In order to obtain the relation between the output
and the input, we shall assume that up to a certain moment both the
input and the output are zero:

e,. = o, 0.. = o, c. = o, (98)

for sufficiently large negative values of n.
Following the ideas of Sec. 5.8, we set

.

gl(z) = xO,&–”, (99a)

-m
.

go(z) = zOo.r”, (99b)

—.

9,(2) = z●nz—’ = g,(z) – go(z). (99C)

-.

By the interpretation of the transfer function discussed in Sec. 58 we
have

go(z) = y(z)g.(z) = y(z)[g,(z) – go(z)] (100a)
or

y(z)
g“(z)= 1 + y(z) g’(z)

(100b)

‘The relation between the sequence IO,.) and the sequence (O..) is thus
the same as that between the input and output of a pulsed filter with the
transfer function

y(z)
Y“(Z)= 1 + y(z);

(101)

y.(z) is the over-all transfer junction of the servo.
Since the pulsed servo is, in effect, a pulsed filter with the transfer

function Yo(z), it is clear that the theory of stability of pulsed servos is
contained in the theory of stability of pulsed filters developed in the
preceding sections of this chapter. Hence the servo will be stable if all
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the singular points of the over-all transfer function Yo(z) are located inside
the unit circle. If at least one singular point lies outside the unit circle,
then the servo is unstable.

We shall suppose, in what follows, that the feedback transfer function
Y(z) is a rational function of z. The singularities (poles) of the over-all
transfer function Yo(z) are then the roots of the algebraic equation

1 + y(z) = o. (102)

The stability criterion becomes this: If all the roots of Eq. (102) are

inside the unit circle, the servo is stable. If at least one of the roots of Eq.

(102) lies in the exterior oj the unit circle, then the servo is unstable.

The stability criterion for pulsed servos is, of course, very similar to
the stability criterion for continuous servos; in fact one need only replace
the ‘unit circle by the left half plane in order to obtain the criterion
(see Chap. 2) for the continuous case. As in the continuous case, the
stability criterion for the pulsed servo can be brought into geometric
form. To this end we define the transfer locus of the pulsed servo to
be the closed curve described by the point Y(z), as the point z describes
the boundary of the unit circle in a counterclockwise direction. If any
points exterior to the unit circle are mapped onto the point – 1 by Y(z),
then at least one of the roots of Eq. (102) is in the exterior of the unit
circle and the servo is unstable. In such a case, the boundary of the
exterior of the unit circle will enclose the point —1; this boundary is, of
course, the transfer locus. One can, in fact, show that the number of
roots minus the number of poles of Y(z) + 1 is precisely equal to the
number of times that the transfer locus encircles the point —1 in a clock-
wise direction. This is, of course, the analogue of the continuous case,
except that the circumference of the unit circle is used instead of the
imaginary axis. If, in particular, the function Y(z) has no poles outside
the unit circle (which means that the servo is stable when the feedback
is cut off), one can use, a modified form of the Nyquist criterion: !f’he servo

is stable ij and only ij 1 the transjer locus does not surround the point — 1.

The procedure to be used when Y(z) has poles on the boundary of the
unit circle is analogous to that developed in Chap. 2.

If Y(z) is a rational function of degree 2, Eq. (102) can be written in
the form

P(z) =z2+Az+B =0, (103)

where A and B are real. In this case (he stability criterion, that the roots
of Eq. (103) lie inside the unit circle, reduces to the followirig simple form:
The servo is stable if and only if

1In this and in the remaiuder of the chapter if a root of Eq. (102) lies oa or outside
the circle of convergence, then the servo ie considered to be unstable.
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P(l)= l+ A+ B>O,
ZJ(-1)=1-.4+B>O,

)

(104)
P(o) = B <1.

The last condition excludes imaginary roots of absolute value ~ 1
and, together with the first two conditions, excludes real roots outside
the interval – 1 < z < +1.

Similar but more complicated criteria can be derived for equations
of higher order.

6.16. Servos Controlled by Filter with Clamping.-The discussion of
the preceding section applies in particular to a servo controlled by a
jilter with clamping. Such a servo can be regarded as a continuous servo
c~ntaining a clamping device that holds the error signal at a constant
value during the period nT, < t < (n + 1) T,; the rest of the servo is
then activated by the errors measured at the instants T,, 2T,, 3T,, . . . ,

instead of. by the errors measured continuously.
Let Y(p) be the feedback transfer function of the servo without

the clamping device. If Y(p) is a rational function of p, the feedback
transfer function Y(z) of the pulsed servo can be computed from Y(p)
by the method developed in Sees. 59 through 5.12. The stability
equation

l+y(z)=o (102)

can then be handled either algebraically or geometrically.
Especially simple is the case when the time interval T, is small

compared with all the numbers la~[–1, the CW’Sbeing the poles of the
function Y(p). As was pointed out in Sec. 5.12, in this case one obtains
the approximate formula

Y(l + T,p) = Y(p). (87)

The variable p is related to z by

z—1
p=~, (84)

and the unit circle in the z-plane goes over into the circle C (see Fig. 5.3),

11
P+~= T,. (105)

The servo will be stable if and ordy if all roots of the equation

l+ Y(p)=o (106)

lie within the circle C defined by Eq. (105). It is evident that the
graphical procedure for determining the stability of the servo consists
in tracing the locus of the points Y(p) as the point p describes the circle
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C in a counterclockwise direction. The number of times that this locus
surrounds the point – 1 in a clockwise direction gives the difference
between the number of roots and the number of poles of Eq, (106) that
lie outside the circle C. This procedure differs from the ordinary Nyquist
procedure only in the fact that the circle C is used instead of the imaginary
axis.

As an illustration of various methods for determining the stability
of a servo, we may consider the simple example in which

Y(p) = K
T,p + 1“ (107)

Aside from the clamping device, the controller of the servo is an expo-
nential-smoothing filter with the time constant Z’1 and the gain K.
Substituting in Eq. (64), we obtain

T.——

y(z) =
K(l – e ‘:)

——
z–e:

(108)

First we apply the stability criterion of Sec. 5.14. The root of the
stability equation

l’,——

l+y(z)=l+
K(l–e~l)=O

z – e-g

(109)

is numerically less than 1 if and only if

l+y(–1) >0, (110)
or

m
1,K < coth ~; (111)

the servo is stable only when the gain is thus limited.
The same condition can be obtained geometrically by considering the

locus of the points Y(z), when z describes the unit circle. As has been
shown in Sec. 5.10, this locus is the circle which has its center on the
real axis and cuts the real axis at the points

w(l) = K, and Y(–1) = –K tanh ~,. (112)

According to the geometrical-stability criterion, the servo will be stable
if the point —1 is not contained in this circle, 1 that is, if

–Ktanh & > –1. (113)

This, of course, coincides with the stability condition derived analytically.
IThe only pole of Y(z) does not lie exterior to the unit circle.
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Suppose now that 2’, is small compared with T,. Then we can use
the simplified geometrical criterion, which involves drawing the locus of

for

(107)

(105)

This locus is a circle in the p-plane, symmetric in respect to the real axis
and intersecting the real axis at the points

Y(0) = K and
()

Y–; =~.
2TI

(114)
?

–~+1
,

The point – 1 lies in the exterior of this cir~le when

(115)

This is an approximate stability condition, which, for the case T,/Z’, <<1,

is practically identical with the exact condition derived above, since it is
permissible in this case to replace coth (Z’J2T,) by 2T,/T,.

6.16. Clamped Servo with Proportional Control.—We now consider
in some detail the servo mentioned in Sec. 5“1, in which the error (that
is, the angular displacement between the input shaft and the output
shaft) is measured at the moments T,, 2T,, 3T,, . . ., and in which the
corrective torque is always proportional to the error obtained at the
immediately preceding measurement.

If the error were measured continuously, we should have an ordinary
servo with proportional gain control. The feedback transfer function
of such a servo has the form

(116)

where Tm is the motor time constant and K is the velocity-error con-
stant. The equalizer of the pulsed servo can be regarded as a filter
with the transfer function Y(p) combined with a clamping device. In
order to compute the transfer function Y(Z) of the equalizer (see Sec.
5.11) we first decompose Y(p) into partial fractions:

Y(p) = $ – +.
P+~m

(117)
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It now follows from Eq. (74) that

or,

——

y(z) = ~ –
KZ’~(1 – e ‘~) .

z – e-$
The stability equation is

1 + y(z) = o,
after clearing fractions,

DATA [SEC.5.16

(118)

(102)

7’.——
P(z) = (z – l)(z – e ‘M)[1 + y(z)] = O. (119)

This is a quadratic equation. According to the remark at the end of
Sec. 514, the necessary and sufficient conditions for stability are

P(l) >0, P(–1) >0, P(o) <1. (104)

The first of these conditions is satisfied identically. The second
and the third, after simple algebraic manipulations, yield, respectively,

& > $ + ~_ :T,,Tm.
r 1’

In Fig. 5.4 the values of T,/T~ are marked

(120)

(121)

on the horizontal, the
values of l/Kl’. on the vertical axis. The two curves represent the
functions on the right-hand sides of the above inequalities: the regicm of
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FZQ.5.4.—Region of instability.

instability is shaded. The graph
shows that when T, << Tm or
Tm << T,, the relation

KT, <2 (122)

is the approximate condition for
stability. For TJTm = 3.7, one
has the optimum stability condi-
tion KT, < 4.2. For other ratios
T./Tm, KTr must be smaller than
a number C that varies between 2

and 4.2. Let us consider a triple of values T,, Tm, K, corresponding to
a point on the boundary of the region of stability in Fig. 5.4. We shall
distinguish between two cases.

1. T,/T~ Z 3.7. In this case the point (l/K T,, T,/ T*) is on the
boundary of the curve represented by the right-hand side of the
inequality (120); that is, the second inequality in (104) is replaced
by the equation P( – 1) = O. In other words, the equation
y(z) + 1 = O has the root z = – 1, and the over-all transfer func-
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tion Yo(2) is infinite at z = –1. This indicates that the servo
resonutis at the frequency if,.

2. T,/Tn <3.7. In this case the third of the inequalities (104)
is replaced by the equation F’(0) = 1. It follows that the equa-
tion Y(z) + 1 = O has a pair of conjugate complex roots on the
boundary of the unit circle. The servo then resonates at the fre-
quency corresponding to these roots, that is at a frequency differ-
ent from *f,.



CHAPTER 6

PROPERTIES OF TIME-VARIABLE DATA

BY R, S. PHILLIPS

INTRODUCTION

6.1. The Need for Watistical Considerations. -Up t o this point we
have limited our design criteria for servomechanisms to considerations
of stability, of suitable damping, and of the nature of the error for a step,
constant-velocity, or constant-acceleration input. We have not con-
sidered the error that will result from the, actual input that the servo-
mechanism will be called upon to follow. Likewise nothing has been
said about the effect on the servomechanism of uncontrolled load dis-
turbances or of the effect of random noise sources, which are often found
in the error-measuring device and the servoamplifier. Clearly the
fundamental entity by which a servomechanism should be judged is
the actual error that results from the actual input and these random
disturbances. It is true that the design criteria already developed,
together with ingenuity and common sense, will in most cases lead to a
satisfactory solution of the design problem. It is, however, essential
to come to grips with the basic problem, not only in order to obtain a
good solution for the exceptional servo system but also to build up a
rational and systematic science of servomechanisms.’

The actual input to a servomechanism, the uncontrolled load dis-
turbances, the noise interference, and the actual servo output can, in
general, be described only statistically. Before developing the necessary
machinery for such a description, we shall discuss some examples of
these quantities.

Usually a servomechanism is required to follow many different input
signals. If, on the contrary, the input were periodic, it would in general
be simpler to drive the output by a cam than to use a servomechanism;
the latter is most useful when its input is varied and to some extent
unpredictable. The set of input signals for a single servomechanism is
similar to the set of all messages transmitted by a single telephone in
its lifetime. Like the telephone messages, the input signals w-ill be
confined to a limited frequency band but will he somewhat varied in
detail. Furthermore, in neither case is it possible to predict the future
with certainty on the basis of the past. On the other hand, the sounds
in the telephone message are not completely unrelated. ‘I’he remainder

262
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of an uncompleted sentence could in many cases be guessed; likewise,
the possible future values of a servo input could be predicted if the extra-
polation were not carried too far into the future. Hence, despite the fact
that the lifetime input to a given servomechanism cannot be described
in a straightforward way as a function of time, it is clear that there is a
great deal that can be said about it.

As an example, consider an automatic-tracking radar system that is
required to track all aircraft traveling through a hemisphere of radius
20,000 yd about the system. Because of the limited acceleration to
which aircraft and pilot can be subjected, all the aircraft trajectories
have about the same degree of smoothness. The location of certain
aircraft objectives near the tracking system also induces a degree of
uniformity in the trajectories. In order to assess precisely the demands
on the system, one would need to know the probability of occurrence
and the strategic importance of the different possible paths. It is well
to remark that although an exact history of the system would furnish
the probability of occurrence of the paths, this information could be
much more easily deduced from other sources.

There are some servo systemsj designed to follow a simple input, to
which the above considerations apply in only a trivial sense. This is
the case for a thermostat designed to maintain a constant temperature
in a building; the input signal is simply a constant temperature. It is,
however, necessary that the thermostat be a closed-cycle system in
order that it may correct the random variations in the building tem-
perature caused by fluctuations in the temperature of the atmosphere.
This is an example of an uncontrolled load disturbance. Another
example is the effect of a gusty wind on a. heavy gun-mount servo-
mechanism. It is clear that one could not hope to design an ideal thermo-
stat-controlled heating system without knowing how the temperature of
the atmosphere fluctuates; the system must be built to respond to the
dominant frequency band of the atmospheric temperature fluctuations.
In order to describe these fluctuations it is again necessary to use the
language of statistics, since it is only certain probability functions of
these fluctuations which are predictable.

There are many other uncontrolled disturbances operating on a servo-
mechanism besides the load di&urbance. The most troublesome are
those which occur where the error signal is at a low power level, as it may
be in the error-measuring device or in the first stage of the servoamplifier.
For example, in the first stage of the servoamplifier it sometimes happens
that small voltage fluctuations caused by thermal agitation of electrons
in a metal or by the erratic passage of electrons through a vacuum tube
(shot effect) are of the same order of magnitude as the error signal. Here
again statistical considerations are called for.
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h example of a noise source occurring in the error-measuring device
is found in radar tracking systems. Here the radar beam scans conically
about the axis of the tracking system. The resulting modulation of the
radar signal reflected from a target provides information about the error
with which that target is being tracked. The received signal is also
modulated by fluctuations in the over-all reflection coefficient of the air-
craft, caused by propeller rotation, engine vibration, and change in the
airplane’s aspect resulting from yaw, roll, and pitch. This type of dis-
turbance is known as fading. An actual record of the fading in the
received radar signal reflected from an aircraft in flight is shown in
Fig. 6.1. The fading is given in terms of fractional modulation and the
roils tracking error that would produce such a modulation in the absence
of fading.

The performance of a servomechanism will depend both on its input
and on these uncontrolled disturbances. Since the input can, in general,
be expressed only in statistical terms, and since the disturbances certainly
can be only thus expressed, it is clear that the output of the mechanism
can be assessed only on a statistical basis. Thus what is of interest is
not the exact performance of the mechanism but rather the average
performance and the hkely spread in performance.

The uncontrolled factors are not necessarily uncontrollable. In
most cases one can, by proper design, control a disturbance so completely
that its effect is negligible. In some instances, however, it is impossible
to do this without badly impairing the mechanism’s usefulness. For
instance, if a filter in a telephone system is designed to transmit a mes-
sage, it must of necessity transmit some of the ever-present noise; if the
noise and the message are in about the same frequency band, one cannot
eliminate the noise without at the same time preventing the transmission
of the message. This same situation holds for servo systems. Here
it is desired to follow a signal and at the same time to ignore the dis-
turbances; as both are not simultaneously possible, a compromise must
be made. It will be the purpose of the remainder of this book to present
and discuss a method for making this compromise expediently.

This chapter will be devoted to developing the statistical tools
of the theory. Sections 6.2 through 6.5 furnish background material—
a discussion of stationary random processes. Although the concept of a
random process is basic in what follows, it is actually used in the calcula-
tions only to obtain certain input examples; these sections can be omitted
on a first reading. On the other hand, it is imperative that the reader
understand the meaning of the autocorrelation function and the spectral
density if he is to appreciate the developments in later chapters. The
autocorrelation function is dealt with in Sec. 6.6; the spectral density in
Sec. 6.7; and the relation bet ween the two in Sec. 6.8. The spectral
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density and autocorrelation function of the filtered signal are derived
in terms of the filter input in Sec. 69, In Sec. 6.10 the autocorrelation
function for the error of a radar automatic-tracking system is derived;
the results compare very favorably with experiment. The remainder
of the chapter is devoted to examples.

6.2. Random Process and Random Series.-A random processl con-
sists of an ensemble of functions of time having certain statistical
properties,

The notion of a function of time y(t) is familiar enough, z An ensemble

of such functions is simply a given set of functions of time. This concept
is most useful when these functions are typical records of some physical
quantity taken from a set of essentially similar systems containing some
uncontrolled elements. The member functions of a random-process
ensemble need not be completely random, and, in fact, we do not exclude
cases where the functions exhibit no randomness whatever.

In general, it will not be possible to predict the future values of a
function of an ensemble from its past values; nor will the similarity
between the physical systems, which generate the ensemble, imply
that one can predict the values of one function by observing another
function of the ensemble. It is not at all obvious that one can formulate
a theory for such an ensemble of functions. In order to do so it is, in
fact, necessary to place restrictions on the ensemble. Only those
ensembles which meet the requirement that there exist certain probability
distributions for the function values will be called random processes; the
precise nature of these distribution functions will be discussed in the
next section. Random processes are then subject to statistical discus-
sion; one can make statistical predictions concerning the functions of the
ensemble and the corresponding physical systems.

Examples of random processes are plentiful in nature. For instance,
we can obtain a random process by recording the fluctuating voltages
due to thermal “noise” between two points on a set of identically cut
pieces of similar metal. The functions of another random process might
describe the possible motions of the molecules of gas in a box. In this
case we assume that we have a sufficiently large number of similar boxes
of gas so that all possible initial conditions of the molecules are represented
with equal likelihood. If we then record the position and velocity

1Severalaspects and applicationsof the generaltheory of random processesare
reviewedby Ming Chen Wang and G. E. UMenbeck,Rev.Mod Phys. 17, 323 (1945);
by S. O. Rice, l?el~Systim Tech. Jour. 23, 282 (1944) and 25, 45 (1945); and by
S. Chandrasekhar, Reu. Mod. Phys. 15, 1 (1943). These papers include rather
complete references to the literature. A mathematical treatment of the subject
can be found in a paper by N. Wiener, A eta Math. 65, 118 (1930).

2For each value of t, y may consist of a set of nombers. In this case y(t) tan be
considered m a vector function of time
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of each molecule in every box for all time, we shall have an ensemble
of functions comprising a random process. The fading record shown in
Fig. 61 is a sample of a function belonging to a random process, generated
by the reflected radar signals from an ensemble of airplanes in all possible
states of motion.

It is not difficult to devise function ensembles with the statistical
properties of random processes. I?or example, consider functions that.
assume only the values O and 1 and are constant throughout successive
unit intervals. We can define an ensemble containing all such functions
by stating the probability of occurrence of every subclass of functions in
the ensemble. For inst ante, we may state that—

1. All functions differing only by a translation in time are equally
likely.

2. The function values O and 1 are equally likely in each interval.
3. The probability of a function taking on the value O or 1 in any

interval does not depend on its values elsewhere.

These conditions can be stated more concisely as follows. Let

{
for n+sst<n+l+s

y.(f) = a.
}n=o, +1 +2,.. ‘—,—

(1)

where the a.’s are independent random variables assuming the values O
and I ~vith equal likelihood. For each set of values of the a’s ( ,
a—l, aO, al, ,), let the probability that s lies In any region within the
interval (O,1) be equal to the length of that region. Then the set of
functions obtained by all possible choices ofs and of the a’s will constitute
the random process. It is well to note that this definition does not
explicitly describe any member function of the ensemble as a function
of time. It is evident that there are functions in the ensemble, such as
y(t) = O or y(t) = 1, that hold no interest for us, since we are concerned
only with average properties. Such functions are very rare; in fact the
probability of choosing one at random is zero.

A random series consists of an ensemble of functions defined over all
positive and negative integral values of an index; often the integers
represent equally spaced instants of time. Such an ensemble is a random
process only if it meets statistical specifications entirely parallel to those
placed on random processes; the properties of random series are exactly
analogous to those of random processes.

An example of a random series can be generated by a very large group
of men, each busily engaged in flipping his own coin. If the record of
each man’s flips is recorded (heads as 1 and tails as —1), then the resulting
set of records will form a random series. The discrete random-walk
problem in one dimension also involves a random series. Here each
member of a large group of men takes a unit step either forward or back-
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ward, with equal likelihood, at successive unit intervals of time; the
record of their positions as a function of the number of steps taken is a
random series. The series obtained by taking the first differences of the
member functions of this random series is precisely the random series
generated by the coin flippers.

6.3. Probability-distribution Functions.—Before the concept of a
random process can be fully understood it is necessary to discuss proba-
bility-distribution functions. Let us consider a finite ensemble of func-
tions. At a definite time t, we can determine the fraction 6, of the total
number of functions y(~) that have a value in the interval between yl
and YI + Ay,. This will depend on the specified YI and t and will be
roughly proportional to Ayl for small Ayl; that is,

al = ~,(v,, ~) Ay,. (2)

The function P,(y,t) is called the “first probability distribution. ” Next
we can determine the fraction & of the member functions for which Y(L]
lies in the range (vI, yl + Ay,) at a given time tl and also lies in the range
(Y2, YZ + AY2) at a given time IZ. This fraction is

82 = l’2(y1, L1;Y2, i2) AY1Ay?; (3)

P2 is called the “second probability distribution. ” JVe can continue
in this fashion, defining the third probability distribution in terms of
the fraction of functions that lie in three given ranges at three respec-
tively given times, and so on. 1

The probability-distribution functions so defined must fulfill the
following obvious conditions.

1.
2.

3.

P. 20.

Pn(yl, tl; y2, t,; “ ‘ “ ; ylt) ‘n) is a symmetric f~lnction in the set of
variables y,, ti; y2, tz; . . ; y., t,,. This is clear, since P. is a
joint probability.
Pk(yl, tl; ; yk, fk)

=/“‘“ b+,“~“‘Ynp’’(y]’];“ ~“’’)tn); ‘4a),-
1=

\
dy P,(y,t). (4b)

Since each function pk can be derived from any P% with n > k, the func-
tions Pm describe the random process in more and more detail as n
increases.

Although we have defined probability-distribution functions for

I If y takes on only a discrete set of values, then P. will be defined as a probability
itself and not as a probability density, Thus P,(y,,t,) will be the probability of ~(t)
taking on the value VI at the time t,, and so on.
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finite ensembles, it is clear that the functions themselves have statistical

meaning when applied to infinite ensembles. Thus
i

b
dy P,(y,t) cana

be thought of as the probability that an arbitrary member function
y(t) of the ensemble lies in the interval a < y < b at the time t. With
this in mind it is now possible to define a random process precisely:

A random process consists oj an ensemble of junctions oj time that can

be characterized by a complete set oj probability-distribution junctions.

It is easy to see that an experimental determination of a probability-
distribution function Pm is a tedious task. Frequently one can determine
the functions P. from statistical considerations. For example, this is
the case for the random process described by Eq. (1). It is evident that
at any time there is equal likelihood that y is either O or 1:

P,(y,t) = + fory=Oorl,
P,(y,t) = o otherwise. 1

(5)

Since a. is independent of a,. for n # m, it follows that

P,(y,, t,; y,, t,) = P1(Y1,tl)1’1(Y2, t2) (6)

~vhenever Itl — fz[ > 1. On the other hand, if Itl— h S 1,then the
probability that both tl and t2 lie in the same unit interval is just
(1 – It, – t,l);the common value is then either O or 1 with equal likeli-
hood. The probability that t,and t,do not lie in the same unit interval
is clearly ltl – t,(;in this case, as in the case described by 13q. (6), any
of the four possible combinations of (y I,y2) occur with equal frequency.
Hence, for IL,– h S 1,

P,(y,, f,; y,, t,) = +(1 – It,– q) + * Ill– f,l

foryl=y2=Oorl,

I

(7)
= +Itl— t,l for (Y,,YZ) = (0,1) or (1,0).

Thus Pz depends on the difference between LIand tq. The higher prot~a-
bi]ity distributions can be discussed in the same way.

To take another example, consider the previously mentioned discrete
random-walk problem in one dimension. Let us suppose that in all
experiments the walker remains stationary at the origin for n s O and
thereafter takes a unit step either forward or backward with equal
likelihood at successive unit intervals of time. Because of this initial
condition we need to consider only n > 0. For this case it can be shownl

1See, for example, Kfing Chen Wang and G, E, Uhlenbeck, Rev. Mod. Phys. 17,
327 (1945), The conditional probability is usually derived in the litcratum. This is
the probability that an individual will be at y at t = n if it is known that at t = O
he was at the origin. Because of our initial condition, this conditional probability
is precisely our P, (y,n) for n z O.
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that

“(”n’ = r+;~+)’(;)”

(8)

if n and y are even or odd integers together; otherwise, P1(y,n) = O. It
can likewise be shown for this problem that pk can be written in terms of
PI; for instance,

Z’2(V,, n,; Y2, n2) = P1(VI,nI)PI[(y2 – VI), (n2 – nl)l, (9)

where n~ > nl. In words, the probability that an individual is at yl
after nl steps and then at YZ after nz steps is equal to the probability
that he first walks to y, in nl steps, times the probability that he thereafter
walks a distance (yz — Y1) in (nz — nl) steps.

HARMONIC ANALYSIS FOR STATIONARY RANDOM PROCESSES

6.4. Stationary Random Process.—In most applications the under-
lying mechanism that generates the random process does not change in
time. In addition, one is usually interested only in the steady-state
output that occurs after the initial transients have died down. When
thk is the case, the basic probability distributions are invariant under
shifts in time.

A random process characterized by probability-distribution functions
that are invariant under a change in the origin in time is said to be a
stationary random process. Such a process is described in increasing
detail by the distribution functions:

Pl(y,) dyl = probability of finding a value of a member of the ensemble
between yl and y, + dyl.

PzIY1, (~1+ T); Y,, (L2+ 7)] dvl dy2 = joint probability of finding a
pair of values of a member of the ensemble in the ranges (y,,
Y1 + dyl) and (YZ, YZ + dyz) at respective times tl + ~ and t2 + T.

This function will be independent of ,; it will be convenient to
abbreviate it as Pz(yl, yz, t),where ~ = h — tl.

P,[y,, (tl + T); Y*, (t! + 7); y3, (t3+ T)]dy, dyz dy, = joint probability

of finding values of a member of the ensemble in the ranges
(Y1, y, + dyl), (YZ,YZ+ dy2), (Y3, Y3 + dy3), at the respective times
tl + T, tz+ T,ts+ T;and so on.

This and all similar P’s will be independent of T.
The thermal motion of free electrons in a metal at constant tempera-

ture and the Brownian motion of molecules of gas in a box at constant
temperature each generates a stationary random process. The random
process described by Eq. (1) is also stationary.

I



SEC,65] TIME A VERAGEi3 AND ENSEMBLE AVERAGES 271

The discrete random-walk problem, formulated at the end of the
previous section, does not generate a stationary random series, since the
set of possible positions continually increases with n; the dependence of
PI upon n is shown explicitly in Eq. (8). On the other hand, the series
produced by the coin flippers is stationary; in this case

P~[Y,, (W + m); “ “ “ ; Yk, (W + ?n)] = (*P for
~i=+l(~=l, ”””, k),

1

(lo)
Pk=o otherwise.

As has already been noted, the first difference of the series obtained by
the discrete random-walk problem in one dimension is essentially the
series produced by the coin flippers. Some of the servomechanism
inputs to be considered later are similar to the random-walk series in
that they are not themselves stationary random processes whereas their
time derivatives are.

6.5. Time Averages and Ensemble Averages.—In dealing with sta-
tionary random processes it is usually assumed that time averages are
equivalent to ensemble averages. This is the so-called “ ergodic hypo-
thesis” of statistical mechanics. It is usually applicable only to sta-
tionary random processes that are (or might be) generated by an ensemble
of systems for which the uncontrolled elements of any one system
approach arbitrarily near to every possible configuration in the course of
time. In such cases it is expected that any one system can be taken as
representative of a properly defined ensemble, not only as regards the
nature of the possible configurations but also as regards the probability
that any given set of configurations will be observed. In other words,
since the nature of the underlying mechanism does not change with
time, it is expected that a large number of observations made on a
single system at randomly chosen times will have the same statistical
properties as the same number of observations made on randomly chosen
systems at the same time. A rigorous mathematical proof of the ergodic
hypothesis has been found for very few systems.

A simple example will serve to clarify the meaning of this assumption.
Consider an idealized billiard table with perfectly reflecting cushions
and a mass point as a billiard ball. Once started, the idealized ball will
maintain its speed forever and, except for certain special initial positions
and directions, will eventually approach arbitrarily near to any given
point on the table. Now let us define an ensemble of trajectories
starting from all possible positions and directions with the probability
of starting in any given region and in any given angular range being
proportional to the area of that region times the magnitude of the angular
range. The ergodic hypothesis will then state that the ensemble average
of any physical quantity defined by position and direction of a trajectory
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will be equal to the time average for any one of the nonperiodic trajec-
tories, For instance, the average time spent by any nonperiodic trajec-
tory in a given region of the table is proportional to the area of that
region; for this is certainly true of an average over the ensemble at the
time when the ensemble is set up and likewise at any other time. In
making an ensemble average in this case it is actually not necessary to
exclude periodic trajectories from the ensemt)lr, since they occur, in any

case, with zero probability,
The ergodic hypothesis can be given a more formal statement as

follows: Let ~(yl, vi, . . . , v.) be an arbitrary function of the variables

y,, v2, . , y~, and let VI = Y(L + 71), YZ = Y(L •1-72),

We ~ha~l ‘d~~o~ey(t + 7.), where y(t) belongs to a random_ process. ~
the time average of F for yi = y(~ + ,i) by F, and the ensemble average
by ~. That is, by definition

/
F=lim 1 T dtF[y(t +71), . . . ,

T-iw~T .T
y(t + 7.)] (11)

and

‘=/”” \dy1”””dy$(y1y2 J””yn)
x Pn[yl, (t + T1); “ ; y“, (t + 7fl)]. (12)

The average ~ is clearly independent of t; ~ will be independent of t
if the process is stationary. The ergodic hypothesis states:

If the random process is stationary, then

F=F (13)

with a probability oj 1.

A few examples will serve to illustrate the significance of this hypo-
thesis. We can determine for any random process the ensemble average

or mean of y, at the time t, from the first probabilityy distribution I’l(y,t):

~=
/

dy yP,(y,t). (14)

From the way in which P, is determined, it is clear that J is the mean of
all the y(t)’s of the ensemble. For a stationary random process, P,(y,t)

and consequently ~ do not depend on t. On the other hand, the time

aver~e, which is defined as

\
jj=lim-!- T dt y(t),

T-MO 2T -T
(15)

will, in general, differ for the various functions of an ensemble. The
ergodic hypothesis states that for a stationary random process these two
methods of averaging give the same result, no matter at what time the
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ensemble average is made or with what function (except for a choice
of zero probability) the time average is made. That is

5=V (16)

The same thing can be said for the higher moments of the distribution
PI) which can be determined by setting F(y) = y’, The nth moment is
defined as

7=
/

dy g“p,(y,t). (17)

For a stationary random process this is equal to the time average

(18)

The second moment is called the “mean-square” value of y, and its

square root @ is called the “ root-mean-square” (abbreviated rms)
value of ~. From the first and second moments one can derive the
variance

(Y – Y)z = 7 – (v)’

——
/

dy (y – j) ’~,(y,t), (19)

which is a measure of the width of the distribution Pl(y,t) about its aver-
age value ~.

6.6. Correlation Functions.—The autocorrelation function of a func-
tion y(~) is defined as the time average of y(t)y(t + 7). It is a func-
tion of the time interval 7 and of the function y. It will be denoted by
h?V(~)or, where this is not ambiguous, by R(7). By definition, therefore,

R(7) = y(t)y(t + r) = lim ~
/

T
dt y(t)y(t + 7).

T+m 2P _~
(20)

As we have seen in the previous section, in the case of a stationary
random process R(~) will not (except for a choice of zero probability)
depend on the member of the ensemble on which the time average is
performed. Furthermore, the time average of ~(t)y(t + r) will be equal
to the ensemble average

y(t)y(t + ,) =
— H dy, dyz YIYJ’2(Y1,Y2,7) (21)

with probability 1, Thus one can define an autocorrelation function
for a stationary random process as well as for a single function. This
function gives a measure of the correlation between y(tl) and y(h), where
tt – tl = r. In case y(tl) and y(h) are independent of each other,

P,(y,, t,;y,, t,) = P1(Y1,W1(IM2) (22)
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and .—
I?(t, –h) = y(k)y(t,) = y(tl) v(k). (23)

For noise this situation is approximated when the time interval r is
sufficiently large.

Some of the properties of R(r) are fairly evident.

1.
R(0) = ~. (24)

2. R(r) is an even function of r, since

R(T) =y(t)y(t +T)=Y(t– T)U(t) ‘Y(t) Y(t– T) ‘R(–T). (25)

3. [R(~)l S R(0). This results from the inequality

O ~[y(t) ~y(t+T)]’ =y2(t)+y2(t +7) +2v(~)Y(~ +7). (26)

Hence
+2y(t)y(t +7) ~y’(t) +y’(t +7). (27)

Averaging both sides of this equation gives

+2R(,) ~y~+y’(t +,) = 2R(0). (28)

4. Given any set of r’s (T1, 72, . . . , T.), the determinant

r

(7,–71) R(Tl~Tz) . . . . . R(T1-Tn)

(T,–TI) R(T, –72) . . . . . . R(T2– Tn)
. . . . . . . . . . (29)
. . . . . . . . . . . . . . .

R(~m ‘T,) R(rn–7J . . . . . “ R(T. –7.)

is symmetric and nonnegative in value. It can be shown that con-
dition (4) is a necessary and sufficient condition that R(7) be an auto-
correlation function. 1

It is sometimes convenient to work with the function

p(7) = [Y(t) – iil[v(~ + r) – ?71, (30)
j5_g2

which will be called the normalized autocorrelation function. It is evident
that p(0) = 1 and that for noise P(7) ~ O as T ~ @.

The autocorrelation function for a random series is defined as
N

1
R(m) = lim —

z
Y.Y.*.N+. 2N+ 1

n--N

It is clear that R(m) has properties analogous to those of R(r).

I A. Khiotchine, “ Korrelationetheorieder Station&en StochastischenProzesse,”
M@. Ann. 108, 608 (1934).
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Examples.—It will be instructive to consider a few examples. In the
case of the purely incoherent stationary random series generated by the
coin flippers one would expect R(m) to decrease very rapidly with
increasing m. As was seen in Sec. 6.4, P1(yl) = 4 and PZ(yl,yz,m) = ~,

where y 1 and gz take on the values + 1. It follows from Eq. (21) that

R(0) = 7 ,Wl(?h) = 12 x *+ (–1)’ x + = 1, (32)
4

and that for m

R(m) =

——
——

#o

zYcyipz(YiJYi,m).

(1)(1)+ + (1)(–1)3 + (–1)(1)+ + (–1)(–1)+ I (33)

o.

The other extreme is represented by the’ function y(t) = 1, for which

R(T) = lim ~
/

T
dtlxl=l. (34)

T-. 2T –T

If y(t) is periodic, then the periodicity persists in R(T). For example,
let

y(t) = A sin (d + @). (35)

Then

R(T) = y(f)~(~ + 7) = lim ~
/

T
dt ~ sin (cd+ ~)~ sin (tit+ cOT+ +)

T-. ZT –T

[

= ~im & Cos ~, _ ~sin (2wT + Q. + 24)

T-)cc 2 2T 2U

1 sin (2tiZ’ – U, – 2@)——
2T 2U 1

A,
. — Cos UT.

2 (36)

Although R(7) has the period of y(t), it is an even function independent
of the phase @ of y(f). For the function

y(t) = A, +
2

A, sin (co,t + Ok), (37)

where G # con for n # m, the autocorrelation function is

z

Al
~(r) = A~ + ~ COSu,,. (38)



276 STATISTICAL PROPERTIES OF TIME-VARIABLE DATA [SEC.6.6

Here again the periods of y are present in R(r), but the phase relations
have been lost. If an apparently random function contains hidden
periodicities, R(r) will approach asymptotically an oscillating function
like that in Eq. (38).

In the case of the stationary random process described by Eq. (l),
we can obtain the autocorrelation as an ensemble average by means of
Eq. (21). The second probability distribution P, is given in Eqs. (6)
and (7). If ~ = tl — k is greater in absolute val!le than 1, then, applying
Eq. (6), we obtain

R(,) =
z

yl@2(Y1, Ll;Y2~2)

=+(OXO+OX1+l XO+ 1X1)=+. (39)

On the other hand, if 171s 1, we make use of Eq. (7):

R(r) = [*(1 – Ir\) + ~171](0X O + 1 X 1) + ~1~1(0X 1 + 1 X O)
= * – +ITI. (40)

It follows from Eq. (5) that ~ = + = ~. Hence the normalized auto-
correlation function is

,0(,) = o for ITI> 1,
= 1 – 171 for 171S 1. )

(41)

To obtain an autocorrelation function from experimental data, one
of necessity starts with a record y(t) of finite length: O s t s T. If the
data are not dkcrete, it is possible to consider them as such by using only
the values at times t= nA (n = 1, 2, . . ~ , N = T/A). The time
interval A should be chosen so small that the function y(f) does not vary
significantly in any interval A. If y(t) is to be used as an input to some
mechanism, it is sufficient that A be small with respect to the system
time constants. Setting Y; = y(nA), then

N–m

R(m) = -&-
z

Y.Y.*, for m ~ O. (42)

n=l

Equation (42) loses its reliability for very large m. For, as can be seen
from Eq. (36), in working with a finite interval T a relative fractional
error of about l/u T is introduced for each periodicity present. The
error in determining the contribution of a period P to the autocorrelation
function will be less than 2 per cent if 27r[(N – m)A/P] >50. Hence
for this purpose T = NA should be about 10P, and m should not exceed
iT/A.

The normalized autocorrelation function of the fading data shown
in Fig. 6.1 was obtained by use of Eq. (42). The period of observation
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was T = 20sec. Thevalue of Awaschosen to be firsec. The resulting
function p(~), calculated over the range O S r s 1.28 see, is shown in
Fig. 6.2. As can be seen, there is very little correlation between data
more than 0.1 sec apart. It follows from this that a very conservative
choice of T was made; 2 or 3 sec would have been adequate.

+ 1.0

+ 0,8

+ 0.6 -

c +0.4
<

+ 0.2

0 n \ ~ / \ / \
/

-0.2
0 0.16 0.32 0.48 0,64 0.80 0.96 1.12 1.28

7 in sec

FIG.6,2.—Normalized autocorrelation function for fading record. The rms value is 10.3
mik.

Correlation Matrix.—If y is a two-dimensional vector (u,v), one defines
a correlation matrix instead of a correlation function. For a stationary
random process, the ergodic hypothesis gives

1 a=l= ‘1U(t)u(t + T) U(t)v(t + T) U(t)u(t + T) U(t)o(t + T)

?J(t)u(t + T)
(43)

O(t)u(t + T) V(t)u(t+ T)“

The function of r, u(t)z’(t + T), is called the cross-correlation function

and will be designated as Rti~(7).
The cross-correlation function is not symmetric, nor can one inter-

change the order of u and v without changing its value. There does,
however, exist the relationship

R..(T) = IL.( –T). (44)
By using the inequality

[ 1u(t)+ZJ(t+ T) 2
Os —

fl~ - @
(45)

and averaging over time, one finds that

(46)

Ru,(.) is a measure of the coherence between u(t) and o(t+ T).
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6.7. Spectraf Density—We shall have occasion to consider the effect
of a filter on the functions of a random process. It is natural, therefore,
to attempt to resolve the functions of a stationary random process into
their Fourier component. Such an attempt will, in turn, lead us to
the concept of the spectral density G(j) of a function ~(t) and of a
stationary random process to which y(t) belongs. If y(t) is the voltage
across a unit resistance, then G(j) df is the average power dissipated
in the resistance in the frequency interval (f, f + df). If y(t) is the input
to a linear filter with transfer function Y(2rjf ), then, as will be shown in
Sec. 6.9, the output has the spectral density lY(2mjf)1’G(j).

The spectral density of a function y(t) is defined in the following way.
Let

!/2’[0 = Y(t) for– Tsfs T,
o elsewhere. )

(47).

The Fourier transform of y.(t)always exists ~nd is by definition

If A* denotes the complex conjugate of A, then, since y. is real valued,

A,(f) = A$(–f). (49)

The average power density for y,(f) at the frequency f is[ 1A,(f) 12]/2T;
both positive and negative f must be taken into account. Since
lA~(f)I = IA=(–f) 1, one can limit attention to positive values of j

and take the average power density to be [IA df )I*l/T. The wec~~al
density of the function y(t) is defined as the limit of this quantity as T
goes to infinity;

G(f) = lii~; lA,(f) l’. (50)

As should be expected, one can obtain the average power in y by
integrating the average power density G(f) over all positive frequencies.
In symbols

\
j?= ~“ dfG(f). (51)

This can be proved as follows. From Eqs. (48) and (49)

\ m‘f1AT(f)12=J:.df[A~(-f)/-”mdt’52)—.
Interchanging the order of integration gives

/ - ‘f1AT(f)12= l-mm (’’(y’’):mfmfA~( ~f-e’”-’”’’fll” ’53)—.

It follows from the Fourier integral theorem (see Chap. 2) that the
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quantity inside the brackets is just y~(t). Hence

/

m

/

T

dL7J;(Q = dty’(t) =
/

m djl~df)l’—m –T —.
r.

Dividing through by 27’ and passing tothelirnit give

Ifwe noninterchange the order of limits, inserting G(j) for its equiva-
lent, the proof of I@. (51) incomplete.

The hbove discussion of the spectral resolution of the function y(t)
has dealt with the power; as a consequence, all information concerning
the phase relationships of y has been lost. It is vdl to remark on the
difficulties encountered in attempting to deal more directly with the
Fourier transform of~. The Fourier transform itself willexisto nlyify (t)
approaches zero ast becomes infinite. For functions such as those found
in stationary random processes, A ~(j) will, in general, either oscillate
or grow without bound as 2’ becomes infinite. Even a mean Fourier

transform such as lim (1/2T)A ~(j) or ~~m~ [1/(22’) ~f]A.(j) will oscillate
T+ ~

rather than approach a limit if y is, for example, a “periodic function”
with a suitably varying phase.

Cross-spectral Density.—It is possible to define a cross-spectral density
for two functions (u,v) as follow-s. Let

and

The cr-oss-spectTal density is then defined as

(56)

(57)

From the relations A ~(.f) = A ~(’–j) and B.(f) = B;( –j) one obtains

G..(j) = G:.( –f) = Gw( –j). (58)

Hidden Periodicztie.s—The spectral density G(j) may contain singular
peaks of the type associated with the Dirac delta function. 1 This will

1The Dirac delta function has the following properties:

I~’dy a(y) =
/
0iy6(y) = ; for all c >0
—,

and
b(y) = o for y # o.
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be the case if the mean value of y is not zero or if y contains hidden
periodicities. The peaks occur at frequencies at which (1/2’) li4,(~)12
becomes infinite with T; the coefficient of the delta function at such a
frequency is given by lim (1/2T2) 1A ~(j) 12. We should theref ore redefine

T+ m
G(j) as follows:

[ 1G(f) = ;lm~ & lA,(f,)12 ~(f – fl)
except where this

is zero,

I

(59)
G(f) = lim ~ lAT(f)12 otherwise.

T+.T

If the mean of y(t) is not zero, then G(j) will have a singularity
at the origin:

G(j) = 2(ii)’L5(j) + G,(j). (60)

For pure noise the peak at j = O, corresponding to the d-c term, will
usually be the only peak, and Gl(j), defined by Eq. (60), will be a
regular function representing the continuous spectrum. In this case
it is sometimes convenient to introduce the normalized spectral density:

s(j) = GU)

/
o-djG,(j)”

(61)

This quantity has the dimension of time, since j has the dimension
(time)–’. The denominator in Eq. (61) is simply the variance of y:

(62)

If y(t) is a trigonometric polynomial

y(t) = Ao +
z

A, sin (2~jkt + @, jk # O, (63)

then the spectral density is

G(j) = 2A~6(j) +
z

$ b(~ – [j,]). (64)

In the general case of noise with hidden periodicities the spectral density
will consist of a continuous part and a number of peaks at discrete
frequencies.

Spectral Density oj a Stationary Random Process.—The member func-
tions of a stationary random process will (except for a choice of zero
probability) have the same spectral density. This, then, may be called
the “spectral density of the stationary random process. ” In computing
it, one can deal with any typical function of the ensemble or, as desired,
can carry out averages over the ensemble.
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As a further example, let us obtain the spectral density of the sta-
tionary random process described by Eq. (1). Since the functions are
given only in statistical terms, it will be necessary to obtain the ensemble
average of the spectral density. Since, however, the process is sta-
tionary, this will be the spectral density for the individual functions except

for a set of probability zero. Since s serves only to shift the time axis
and since the spectral density is independent of phase, it is clear that we
can suppose s to be zero. To simplify the calculations let us subtract
out the mean at the very start. We have then

y(t) = a. – + forn~t<n+l, (65)

where the an’s are independent random variables and take on the values
O and 1 with equal likelihood. By Eq. (48),

N–1

A.(f) ==
z (“- ~) f+’’’’-’m’”

.=— N
N–1

= y ~ (.. - ;)e-,.f(w.

1

(66)

.=— N

Squaring the absolute value of A~(j) and dividing by i’i give

We now take the ensemble average of 13q. (67). Since

(~:; ifn #m,

ifn=m, )
(68)

x
it follows that

()

F yf ’;.— . (69)

Taking the limit as N becomes infinite, we obtain the average spectral
density:

(70)

Spectral Density of a Random Series.—The spectral density for a
stationary random series is defined in an analogous way. Given the time
series v., consisting of data recorded at uniform intervals of length T.,’ we

define, in analogy to Eq. (48),
u,.

A,(f)= T.
z

y~e–z”’l “r’. (71)
..—.V

1The quantity T. is the same as the repetition period of Chap. 5.
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This function is periodic in f with period 1/2’,; it is completely determined
by its values in the range (–1/2T,, l/2T,). Since the Y. are real,
A .Jf) = A:( –j). We then define the spectral dcnsit y of the time
series, in analogy to Eqs. (59), as

[

1
W) = ,;~mm 2(N + i)2T:

‘1

l~vul)l’ ~(f – jl),

except where the quantity in the bracket is zero, and as
1

G(j) = ~l:mm(N + ii) ~, lA,df)l’ elsewhere.
)

It follows from the periodicity of .4~(j) and the orthogonality
functions e-’”jfm’r that

$’= ~llf’A,(~”2 = ~1’’2T’d~’AN(f)’2–N
Hence

(72)

of the

(73)

(74)

The spectral density of a stationary random series is, of course, defined
as the spectral density of any typical series from that ensemble.

0.10

0.08

~ 0.06
m
c.-
<
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FIG. 63.-Normalized spectral density of fading record.

~pectral Density jor Experimental Data. —There are several procedures
whereby one can obtain the spectral density from experimental data.
The best method is to calculate the spectral density as the Fourier tmns-
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form of the autocorrelation function. This will be explained in detail
in the following section. Figure 6.3 shows the spectral density obtained
in this way for the radar fading record shown in Fig. 6.1.

It is, of course, possible to obtain the Fourier coefficients for a finite
length T of data and then to compute G(j) by means of Eq. (50),
with the limit process omitted. Numerical-integration methods require
that the data be discrete. From N pieces of data it is possible to obtain
N/2 harmonics. This is, however, a very tedious task even when one
takes advantage of short cuts. 1 Various machines have been devised
to obtain the Fourier coefficients; one such is the Coradi harmonic
analyzer, which performs the required integration, harmonic by harmonic,
as the apparatus is driven so as to follow the curve representing the data.
It is also possible to have a voltage follow the data and send the voltage
through a wave analyzer.

6.8. The Relation between the Correlation Functions and the Spectral
Density—Both the autocorrelation function and the spectral density
depend on the product of the function y(t) by itself. Both functions
likewise depend on the periodicities in the message but are independent
of the relative phases of the Fourier components. It is therefore not
surprising to find that they are Fourier transforms of each other.2 In
fact, as will be proved later

and
!R(T) = “ dj G(j) COS27rfr

o

/
G(j)=4 “ dr R(,) COS27rj7.

o

(75)

(76a)

Similar relations hold for the normalized functions p(~) and S(f); for
instance

/
s(j) = 4 “ d, P(7) COS27rj7.

o
(76b)

This intimate relationship between the spectral density and the auto-
correlation function sheds more light on the interpretation of each. For
example, a delta-function singularity in the spectral density at the
frequency jl corresponds to a cos 27rj17 term in the autocorrelation
function. An exponential-decay autocorrelation function, such as is

I There exist short-cut methods for the cases N = 12 and N = 24. See, for
instance, E. T. Whittaker and G. Robinson, The Cafcdu.r of Observations, Blackie,
Glasgow, 1929, pp. 26W264.

ZThis relation is contained in a paper by N, Wiener, Acts Math. 55, (1930). The
reader will find in this reference a rigorous treatment of the subject matter of the
present chapter, which, incidentally, avoids use of the delta frmction by working
with the indefinite integral of the spectrum G(f).
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sometimes associated with noies,

R(7) = e–~1’1, (77)
has the spectral density

G(j) = Q
j3’ + (%f)’” (78)

This function is bell-shaped, decreasing to half its zero-frequency ampli-
tude at f = fI/2u.

Aside from their theoretical importance, Eqs. (76) are extremely
useful as an aid in the calculation of the spectral density. It is often
simpler to compute the, autocorrelation function first and then the
spectral density by means of Eqs. (76) than to compute the spectral
density directly. This is, for instance, the case with the stationary
random process described in Eq. (1). The autocorrelation function
[Eqs. (3~) and
subtraction of
becomes

(40)] is easily computed as an ensemble average. On
the contribution due to the square of the mean, this

R,(7) = +(1 – 171) for 1~1S 1,
. 0 elsewhere. 1

(79)

Applying Eqs. (76), one obtains very simply the spectral density that
was derived in Sec. 6.7 by a rather involved argument:

(70)

A second example is provided by the normalized spectral density
(Fig. 6.3) of the radar fading record shown in Fig. 61. This was obtained
by means of Eqs. (76) from an approximation to the normalized auto-
correlation function of Fig. 6.2:

p(~) = e–z~l’lcos 40T. (80)

This function is plotted, along with the experimentally obtained auto-
correlation function, in Fig. 6“4; it has all of the properties of an
autocorrelation function. On comparing the spectral density and auto-
correlation function, one sees that the p,eak in the spectral density occurs
at the frequency of the damped oscillation of the autocorrelation function.

If the Fourier coefficients were to be obtained directly from Eqs. (76)
by some method of numerical integration, use could be made of the fact
that the autocorrelation function vanishes for all practical purposes for
r ~ 0.2 sec. On the other hand, in order to obtain the spectral density
directly one would be forced to work with 20 sec of data. Thk is no
easy matter when the frequencies of interest are as high as 30 cps. One
could, however, argue that it is no easy matter to obtain the autocorrela-
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tion function. It is not difficult to calculate the number of computa-
tions involved in both methods. To obtain N/2 harmonics (sine and
cosine) from N pieces of data, N2 multiplications and N2 additions are
necessary. To compute N/4 values of the autocorrelation function from
N pieces of data&N’ multiplications and & N2 additions are necessary.
The work needed to obtain the spectral density from the autocorrelation
depends upon the autocorrelation function. In general, for a random
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? in sec
FIQ. 6.4.—Normalized autocorrelation function for fading record.

series the autocorrelation function is effectively zero after the (aN)th
lag, where a <<1. In the case of the radar fading record a was ~.
Computation of the Fourier cosine transform then involves only (wN)i/2
additional multiplications and (aN) 2/2 additions; the ratio of the
number of operations in the two methods of calculation is 1 to
(*+ a2/2).

Even when the autocorrelation function does not vanish for the
larger values of,, it is still of advantage to compute it first. Its usefulness
lies in the fact that one can compute the indefinite integral of the nor-
malized spectral density [see Eq. (61)] directly from the normalized
autocorrelation function [see Eq. (3o)]:

/

IO

I(f”) =
\

p(T)
dj S(j) = : “ ,(17 –— sin 2~j07.

o n
(81)

[Equation (81 ) is ol)t,i~i~(,(l on intcgratin~ l;q. (76b) with respect to j,]
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The integral equals the fractional power in the message below the fre-
quency fo, except for the d-c component. If 11(j~) – I(fl) I is much
less than 1 [note that 1( co) = 1], then the values of S(j) in the interval
~,,~,) are negligibly small and need not be computed. By computing
I(j) for several values of j one can therefore make a quick survey of the
regions in which S(f) is significantly different from zero. The advantage
of knowing the important frequency regions of the spectrum needs no
further emphasis.

We now return to the proof of Eqs. (75) and (76). It is convenient
to work with the auxiliary function

(82)

.
where y ~ is defined by Eq. (47). It is clear that the autocorrelation
function is the limit of C,(,) as 2’ becomes infinite:

The Fourier transform of c. can be rewritten as follows:

Interchange of the order of integration and introduction of s = t + T

as one of the variables of integration give

where A ~(j) is defined in Eq. (48). Finally, making use of the fact that
CT(T) is an even function and passing to the limit, we obtain Eq. (76a):

Since the function lim (1/2’) 1A ~(f) [2 is even, Eq. (75) can be obtained
T’+ m

directly from Eq. (76a) by means of the Fourier integral theorem (see
Chap. 2).
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When y(t) has a nonzero mean and contains periodic terms, its auto-
correlation function has corresponding constant and cosine terms. In
evaluating Eqs. (76) use must then be made of the following relations: 1

(87)

where j~ # O. It is very easy to show that Eqs. (75) and (76) properly
relate the autocorrelation function [Eq. (38)] and the spectral density
[Eq. (64)] for a trigonometric polynomial.

Relations similar to Eqs. (75) and (76) exist between the cross-
correlation function and the cross-spectral density. If g is a two-
dimensional function (u,o), then the following theorem holds:

/
G..(j) = 2 m d~ Ru%(~)e-’”if’, (89)

—.

where G.v (j) is defined as in Eq. (57).
In the case of discrete data taken at successive instants of time 1“,

sec apart, the analogues of Eqs. (75) and (76a) are

/

l/2T,

R(m) = dj G( j) cos %jT,m (90)
o

and

‘(n‘4Tr[~+D--l” “1)
711=1

The proof of these results is similar to that for the continuous case.
In evaluating Eq. (91) when g has a nonzero mean or contains periodic
terms, use must be made of the following relations:

] If in the spectral density the entire frequency range were used instead of the
(O,co) interval, Eq. (87) could be rewritten as

in which case the e.econd equation could be derived from the fist.
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.

(z42’, ; +
)

cos 2rf T,m = 28(f),

m-l
. )

[24T, ~ +
(-’’”cos%fT,ml ‘2’(’-+)

m-l
m

(z
47’, ; +

)
cos %fOT,m cos %fT,m = J(f – Ifol).

m-l 1

(92)

6.9. Spectral Density and Autocorrelation Function of the Filtered
Signal.-The discussion up to this point has dealt with certain useful
statistical properties of time-variable data in general. These ideas
apply equally well to the input and the output of a servomechanism.
It is the purpose of this section to study the response of a servomechanism
to an input of which only certain statistical properties are known. We
shall suppose that only the spectral density of the input (or its time
equivalent, the autocorrelation function) is known. If the mechanism
is linear and does not change with time, it is then easy to determine the
spectral density of the output. Therein lies the principal usefulness of
the spectral density.

The theorem is simply stated: If Y(%rjf ) is the transfer function of a
linear time-invariant mechanism and G,(f) is the spectral density of
the input, then the output spectral density Go(f) is

Go(j) = IY(27rJ)12G@. (93)

One would certainly expect a theorem of this type to be true; but
because of the way in which we have been forced to define the spectral
density, the proof ite@f is not straightforward. The spectral density
has been defined as a limit involving the Fourier transform A,(f) of y,,
which vanishes outside the interval (– T, T). Although Y(~fiA r(f)

is the Fourier transform of the output under these conditions, it is not
the Fourier transform of a‘ function that vanishes outai~e any finite
interval. For this reason the proof of Eq. (93) which follows has its
starting point in the time representation of the linear system.

It was shown in Chap. 2 that any stable linear time-invariant mecha-
nism which acts only in the papt 1 tan be represented by a weighting
function on the past of the input y(t). Let the weighti~g function be
written as W(t). Then

1For the purposesof this discussionit is not neceaaarythat the operatoract only
in the past.



SEC. 69] THE FILTERED SIGNAL 2S9

w(t) = o for t <0,
and

/

.
dtl W(t)l < m.

o– I

(94)

The weighting function may contain Dirac delta functions. The output
z(t) is then

\

m

/

.
z(t) = ds y(t – 8)~(S) = ds y(t – s) W(S). (95)

o– —.

The autocorrelation function of the output can be written in terms of
the input as follows:

““)=::m*/:Td’[/-”mdsy(’-s)w’s’
r. 1

Interchanging the order of integration gives

[JIT

‘D-T 1
dt y(t – s)y(t + r – r) X W(r). (97)

The limit, as 2’ becomes infinite, of the quantity inside the brackets is

A!.(r+ s-r)= lim ~
/

T
dt y(t)y(t + , + S – r). (98)

y+. 2T –T

Passing to the limit, therefore, gives

H
.

R,(T) = ds “ dr W(S)RU(T + s – r) W(r). (99)
—. —.

This is the time equivalent of Eq. (93). The mean-square value of
the output ~, obtained from Eq. (99) by setting T = O, is

//

. .
~= ds dr W(S)RV(S – r) W(r).

—. —.
(loo)

Equation (93) can now be proved by taking the Fourier transform
of Eq. (99). Thus

\
Go(fi = 2 -

—. “R(’)”-2”’J’=2J” d’~” ‘s/-”. dre-’rif+a+)-)“2miJ,e:2gf.~y(,-~s – T)W(S)W(r). (101)

On change of the variable of integration ~ to (~ + s – r), the volume
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integral breaks up into the product of three independent integrals:

Go(f) = IY(!-kj.f) 12GJU), (93)
where

/
Y(27rjj) = “ dt W(t)e–2*~r’, (102)

—.
as in Chap. 2.

We shill be interested in a case slightly more complicated than the
problem just considered. Suppose that the input consists of two parts
—signal and noise. To use the terminology of Sec. 62, the random
process y, which describes the input, has two components (u,v), where
u is the signal record and v the noise record. It frequently happens that
the signal and noise enter the mechanism at different points or in different
forms. In such a case, the mechanism will operate on these two compo-
nent functions differently. Let the weighting function operating on u
be W, and that operating on v be W2, where both W1 and W2 satisfy
the condition of Eq. (94). The output is then

\
“ ds u(t – s) W,(S) +

/

.
z(t) = ds ti(t – S) W,(S). (103)

o- o–

Applying the same reasoning as before, we obtain

//
R.(T) = - ds “ dr [w,(s)Ru(, + S – ~) W,(r)

—. —m

+ W2(S)R.(T + s – T)W2(7-)+ wl(s)a.(~ + s – ~)wz(~)
+ W1(T)RVU(T+ s – 7) W2(S)], (104)

where R..(,) = u(t)v(t + T). The Fourier transform of this equation is

Go(j) = lY1(27rjj) I’G.(j) + ty2(%.f)I’Q.(i)
+ Y~(27rjj)GuJj) Y,(27rjj) + Y,(27rjj)GoJj) Y;(27rjj), (lo5)

where Gum(f) is the cross-spectral density defined as in Eq. (57).
We shall conclude this section with a resum6 of the analogous results

for the case of a random series. If the filter is stable, linear, and time
invariant, it can be represented as a weighting function w-, where

w. =0 for m <0,
.

z
IW*I < co.

m-o 1

For an input series [y(m)], the output series is then

.

z(m) = 2y(m – n)w..

D=o

(106)

(107)
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The transfer function for w is

Y(27rjj) =
x

wine-Zzjf T,in. (108)

m=(l

The output spectrum is again related to the input spectrum by Eq. (93),
and the output autocorrelation formula is

(109)

EXAMPLES

6.10. Radar Automatic-tracking Example.—It ~vill be instructive to
derive the error spectral density and autocorrelation function for a gyro-
stabilized automatic-tracking radar mechanism on which a great deal
of experimental data are available and to study the effect of fading in the
reflected radar signal in causing tracking errors. In order to simplify
the discussion it will be assumed that the aircraft being tracked is flying
a radial course directly away from the tracking system. In this case
the problem of following the maneuvers of the plane is trivial, and the
only source of error will be the fading.

An abbreviated description of the tracking system ~rill now be given,
A measure of the difference between the direction to a target and the radar
reflector axis is obtained by conically scanning a pulsed r-f beam. The
received signal is first amplified and rectified, The resulting envelope
is a modulated signal of the form

u[l + c(I) sin (27rj,t + ~)], (110)

where u is proportional to reflection coefficient of the plane, ~(t) is propor-
tional to the magnitude of the angular error in tracking, and j, is the
scan frequency (30 cps). The phase angle @ determines the direction
of the error relative to the reflector axis; @ = O corresponds to an error
in traverse only.1 Random variations of the reflection coefficient of the
plane cause the signal envelope to be of the form

[1 + g(t)][l + t(f) sin (2Tj,t + 1$)] (111)

A typical record of g(t) is that shown in Fig. 6.1.
The signal is then sent through a high-pass RC-coupling transformer

which serves to take out the d-c term. The resulting signal is next

] The traverse angle is measured from the line of sight in a plane containing the
line of sight and a horizontal line pmpmdiclllar to the line of sight. The error in
azimuth is roughly equal to the error in traverse multiplied by the secant of the
elevation angle.
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commutated in order to determine the phase @ of the error proper. The
commutator produces two signals, one equal to the input multiplied by
2 sin %rj,t,the second equal to the input multiplied by 2 cos %rj,t.[The
normalizing factor 2 is introduced to make the peak value of the incoming
signal ●(t) sin (%-j,t+ ~) equal the resultant of the mean values of the
output signals c(t) cos 1#1and ~(t) sin o.] The first of these signals, the
traverse error signal, is then used as input to a servoamplifier that
controls the azimuth of the antenna axis, whereas the second is used as
input to another servoamplifier that controls the elevation of that axis.
The traverse and elevation signals are thereafter handled similarly.
The commutated signal is sent through a low-pass filter in order to
eliminate the 60-cycle ripple. The resultant signal goes into a servo-
amplifier with equalizing circuit having a transfer function (see Chap. 2).

Y(p) = K“ ~1, (112)

where p is the complex variable of the Laplace transform and

TI = 0.36 see,
7’* = 16 see,

)

(113)
K, = 80 see–’.

The equalizer was chosen to have a large velocity-error constant K, and
to cut off rapidly above frequencies common in tracking. In Chap. 4
thk was called ‘ ‘proportional-plus-integral control. ”

A current proportional to the output voltages is used to excite the
traverse and elevation torque motors, which, in turn, precess a free-
floating line-of-sight gyro. The rate of precession is proportional to
the currents through the torque motors. Finally, the “reflector is slave
to the gyro. The servo that performs this task is so much faster than
the equalizing circuit that for purposes of this calculation it can be
assumed perfect. The net effect is to drive the output 00, so that in
terms of Laplace transforms (see Chap. 2)

z (eo) = KV(T,p + 1)
s (commutated error signal) P(TZP + 1) ‘

(114)

where all proportionality y constants have been absorbed in K,. When
the system is in proper adjustment, there is no interaction between the
elevation and traverse control systems. This permits us to limit the
discussion to a single component of the error, the traverse component.

Let us begin our analysis with the received signal [Eq. (11 l)]. It is
found in practice that Ie(t)I remains less than 0.05 and that the rms value
of g is approximately 0.25, To a first approximation it is therefore pos-

1

I

I

I

I

I
I



SEC. 6.10] RADAR AUTOMATIC-TRACKING EXAMPLE 293

sible to neglect the cross-product term; the received signal can be written
as

Sl(t) = 1 + g(t) + t(t) sin (2m~,t+ ~). (115)

In discussing the behavior of the azimuth servomechanism we can set
@ = O, provided we allow c(t) to assume positive and negative values;
c is then, strictly speaking, the difference between the traverse input O,
and the traverse output f?o. That is,

The principal effect of the high-pass RC-coupling transformer on the
signal sl(t) of Eq. (115) is to remove the d-c term; its output is essentially

sz(t) = g(t) + (01 — 00) sin 2rj,t. (117)

It is convenient at this point to convert g, O,, and 6. to angular roils.
The conversion factor is determined by and varies inversely with the
fractional modulation in signal intensity caused by moving the reflector
axis a given angle away from the target.

The signal s,(t) now goes through the commutator, which converts it to

S3(f) = [g(t) + (0, — O.) sin 2Tf, t] 2 sin %r~d
= 2g(t) sin 27r~.t+ (O, – 0.) – (O, – 0.) cos 47tf,t. (118)

This commutated signal is then sent through a low-pass filter which
eliminates the 60-cycle ripple term (01 — 190)cos hj,t. The low-pass
filter has no effect on (O, – 6.), since most of the spectrum of (O, – 0.)
lies below 2 cps. In the case of 2g(t) sin 27rj,tit serves to attenuate that
part of the spectral density which lies above 10 cps. Let us designate
by f?~(t) that part of the filter output due to the input 2g(Q sin 27rj~t. The
net effect of the low-pass filter is then to change the commutated signal
SJ(t) into

s4(t) = ON+ (1%– 00). (119)

This signal is the input to the network with transfer function given
by Ilq. (114). Therefore

Kv(!r,P + 1) S(ON + 0[
c(%) = – e.).

p(T,p + 1)
(120)

Rearrangement of Eq. (120) gives
K“(!r,p + 1)

s(t) =
~(eI) p(!r,p + ,) ‘(’N)

~ + Kv(T,p + 1) – ~ + Kw(z’lp + 1) “
(121)

p(z’,p + 1) p(T2p + 1)

We are now in a position to apply the theory developed in Sec. 6“9.



294 STATISTICAL PROPERTIES OF TIME-VARIABLE DATA [SEC. 61CI

In terms of the quantities in Eq. (105), we have

u = 01,

v = 8N,I (122)
output = 6,

(T,27rjj +“l)27rjj
YIUW = ~,(zmjf)z + (1 + KmTl)%jf + ~v’

Ku(z’127rjf + 1)

I

(123)

Yz(2~jJ) = ~z(2Tj~)z + (I + K. T1)2rjj + L“

Spectral Densities of the Input and Noise.—In general, the trajectory
of the airplane has zero correlation with the fading, which is caused by
fluctuations in the airplane reflection coefficient due to the erratic part
of the plane’s motion. For this reason the function Gti.(~) = G*U(–f)
vanishes identically.

When consideration is limited, as it is here, to a plane flying a radial
course, the only source of error is the fadifig itself. The input angle Of
is a constant; we may take it to be unity, and

Gti(j) = 2L$(f). (124)

AS Yl(2@) contains j as a factor, the quantity [Yl(21rjj) 12Gti(~)vanishes
identically. The error spectrum G,(j) consequently reduces to

G.(f) = IY,(2Tjj9j2G,(j). (125)

There remains the determination of Gv(j). Since v = d~(t) was
obtained by sending the signal 2g(f) sin 2~fd through the low-pass filter,
we shall first obtain the autocorrelation function and then the spectral
density for the function 2g(t) sin 27rJ,t. As we have seen

R(T) = 4g(t)g(t + 7) sin 2rf,t sin 2r~.(t + 7). (126)

Since the fading is independent of the position of the beam in a scan,
a particular time series g(f) is associated in the ensemble with all possible
phases of the commutator. Hence all traverse error signals 2g(t) sin 27rj,t,
differing only by a translation in time of g(t) or a translation in phase @
of the commutator, are equally likely. We therefore replace Eq. (126) by

Averaging the sinusoidal factor over all possible commutator phases
gives

It follows that

R(T) = 2 Cos 27rf,Tg(t)g(t + T~= 2(COS27rj$T)Ro(T) (129j

The normalized autocorrelation function P,(7) = [R,(T) l/[11,(0)1, cOrn-
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puted from the fading record of Fig, 6.1, is shown in Fig. 62. Figure
63 gilts the normalized spectral density S,(j) of g(t), computed as the
Fourier transform of 2P.(7). It is a simple matter to go from the Fourier

10-2X5

4

1
0.003(

I

\

\

~
-: 35 40 45 50

Frequency In cps

FIG. 65.-Normalized spectral density of the commutated fading record,

transform of P,(7) to that of p,(,) cos 27rj.r, which is. of course, the nor-
malized spectral density of 2g(t) sin 27rj,t; this is easily shown to be

s(j) = $[~.(j – f.) + S,(j + js)l. (130)

The normalized spectral density of the commutated fading record is
plotted in Fig. 6,5; it is quite flat out to about 10 cps, after which it rises
to a double peak.

In order to obtain Gu(j) we must multiply S(f) by

R(o) = Zl?g(o) = 212 mi12 (131)

and by the square of the absolute value of the transfer function of the
low-pass filter. The latter ~vill not affect the low frequencies but will
attenuate the higher frequencies, flattening out the peaks in Fig. 6.5.
It will therefore be satisfactory to approximate Go(j) as a constant
equal to G,(O) for frequencies up to 5 cps; beyond this it does not matter
since the servoamplifier is insensitive to frequencies above about 5 cps.
We therefore set

Go(j) = (0.0030) (212) = 0.636 milz sec. (132)

The final equation for G,(j) is

KJT,2rjj + 1)
2Go(o). (133)

“($) = T2(27rj’)’ + (1 + K, T,)2Ki$ + ~0
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The normalized error spectral density h’,(f) = G.(fl/~ mG,(j) dj is

plotted in Fig. 6“6 for special choice of constants given in Eq. (113).
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FIG. 66.-Theoretical normalized spectral density of the tracking error.

By means of the integration tables in the appendix (see Sec. 7“6), it is

easy to show for these constant values that

/
m dfG.(j) = 0.703 Inilz. (134)

o

The normalized autocorrelation function can be computed from
S,(j) by means of Eq. (75). The computed normalized function is,
for the choice of constants given in Eq. (113),

~p(~)= e–0.93i”1(COS2T + 0.106 sin 2171). (135)

Equation (135), which is the final result of this theoretical argument,
is plotted in Fig. 6“7 along with an experimentally obtained normalized
autocorrelation function of the traverse tracking error for a receding
plane. The experimental data from which the latter was obtained are
shown in Fig. 6.8. The theoretical rms error was 0.84 roil, and the experi-
mental value was 1.04 roil. The close correspondence between theory
and experiment gives a good indication of the reliability of the method



SEC. 610] RADAR AUTOMATIC-TRACKING EXAMPLE 297 I

+ 1,0

+0,8

+0.6

+0.4

c
K

+0.2

c

-0.:

-Of

\

\

\

\
\
\
\ . Experimental funtior

\
-— —_

\\

(

\

\_ ~

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Tin sec

Fm. &7,—Theoretic&l and experimental normalized autocorrelation functions of traverse
tracking error.

+4

+2

o

-2

~
5

+2

o

-2

-4
tinsec

FIG. 6.8.—Traver~ tracking data, outgoing radial course.
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in predicting the behavior of a servomechanism with given design
constants. It will be the purpose of the remaining chapters in this book
to exploit these ideas further in developing design criteria for
servomechanisms.

6-11. Purely Random Processes.—A stationary random process hav-
ing a constant spectrum is called a purely random process. In finding
the output of a servomechanism with a noise input it is often convenient
to treat the noise as though it were a purely random process. This can
be done because the noise usually has a flat spectrum that extends far
beyond the cutoff frequency of the servomechanism; the change in
amplitude at the high frequencies does not affect the output of the device.
This was the case in the example treated in the last section. It is evident,
however, that no such noise can ever be found in nature, since the

J
average power of a purely random process ~” df G (f) is infinite. It will

be instructive to determine some of the other properties of purely random
processes.

A constant spectrum can be obtained as a limit from a variety of
processes. A case in point is a modification of the stationary random
process described by Eq. (1).
Let

(~+s)Ll st<(7t+l+s)A,

u,(t) = a., n=o, +1, +z, ...,

}

(136)
A>O,

where (1) an = + - with equal likelihood; (2) amis independent
of am for m # n; and (3) for each set of a.’s, the probability that s lies
in any region within the interval (O,A) is proportional to the length of
that region. Following the argument by
one can easily derive

R*(,) = &
()

@

. 0

whi~h Eq. (41) was obt~ined,

for jr] S A,

)

(137)
elsewhere.

As before, the spectral density can be obtained by means of Eqs. (76):

(138)

Passing to the limit as A -O, one has

G,(j) = f:. G.(j) ==N. (139)

The limiting process is thus a purely random process.
As A approaches zero, the autocorrekd,ion functions RL(,) approach
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a delta function. Since the area under each curve
N/2, this must be true of the limit curve. Thus

R(r) = lilio R.(,) = : 6(T).

299

Rd(r) is equal to

(140)

If the relation in Eqs. (76) is to reinain valid, this must certainly be the
case.

Finally, the member functions of the process of Eq. (136) become
increasingly wild as A approaches zero. In the limit the functions are
made up of an infinitely dense sequence of independent delta functions;
the values of the functions at any two different times are completely
uncorrelated. Hence in the limit

P2(yl,y2,T) = P,(y1)P1(y2) for 7 # O. (141) “

If purely random noise of constant spectral amplitude N is sent
through a linear mechanism with transfer function Y(2Tj~), then the
output spectrum will be, by Eq. (93),

Go(j) = N Y(2irjf) 12. (142)

If W(t) is the weighting function corresponding to Y(27r3”) [Eq. (102)],
then by Eq. (99) the output autocorrelation function is

//
R.(TI = ; _“ ds “ dr ?V(S)6(, + s – r)W(~)

m —.

[

N“—— ~ _ ds ~V(S)~(, + S). (143)
.

Consideration of this expression suggests another example of a purely
random process. Since W(t) is the response of the mechanism to a single
impulse, one can easily show by direct calculation that Eq. (143) is the
autocorrelation function of the output when the input consists of any
sequence of independent delta junctions having a zero average value, a
mean-square value of N/(26), and a random distribution in time with
density ~. Furthermore, any stationary random-process input that gives
an output with autocorrelation function that of Eq. (143), whatever
the form of the weighting functions, must have a constant spectrum.
Hence another example of a purely random process can be defined as
follows :

y(t) =
z

a~~(t — t.), (144)

where the an’s are independent random variables all having the same
distribution with zero mean and the intervals (L – tn_J are likewise
independent random variables all having the same distribution with
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mean value I/@. If UY= N/(2P), then the spectral density will have the
constant value N. The corresponding output of a linear mechanism
will be

z(t) =
z

a,, w(t — LJ. (1 45)

A purely random series is defined analogously as a stationary random
series having a constant spectrum. Any such series can be represented by

y. = an> n=o, fl, f2, ”.., (146)

where the n’s are independent random variables all having the same
distribution, with

N
a=O,

2 = 2P,’
(147)

T, being the time betlveen successive val~les of n (the repetition interval).
It is clear that, in this case

(148)

Tbe spectrum obtained I)y means of Eq, (!) 1) is simply

(;(f) = .V, (1 N)

The series produced I)y tlw coin fli!}pcm (Sec. (;2) is :m example of :~
purely random series.

6.12. A Typical Servomechanism Input. —’llis sect i<mwill Iw dcv (Jted
to an example of a servomechanism input that is :lppropri~ltc for an
automtitic-tracking md:Lr systcm, ‘1’his exwnple IMS Iwrn (Lsed in the
following chapters. An :~iit{Jlll:Lti(-tr:l(kiIlgIWI:W system is rcllllired
to track all aircrtift traveling through a llcmisphrre, s:~y uf r:~(ii~ls20,000
yd, about the system. ,ts a first approxim:~tion, (mc m:ly treat the
angular rate uf the :Lirplanc as c~mstant tl~ro~@ cxtrn(led illtervak,
with abrupt ch:mges from O]lC V:LIUC!to mnot]lcr’ vallle indepcn(~cnt of
the first, etc. ‘Mc tingll]ar displxcrncnt alml]t the tracking system )~uuld
then vary as indicated in Fig. G!la. The changes in angul:lr velocity
might corrcsptm(l to the maneuvers of the aircraft. This type uf input
should not be confused }~ith an input having a constant angular rate
through extended intervtils, with the chanqvs in nzfc random and inde-
pendent; in our example it is the rates themselves that arc random and
independent.

A better approximation than that, of Fig. 69a to the tr:~jertory of a
maneuvering aircraft could be obtained by rounding off the corners
so that within each interval the angular rate of the aircraft approaches a



SEC. 6.12] A TYPICAL SERVOMECHANIL7M INPUT 301

constant value asymptotically, with exponential decay of the difference.
Such a trajectory is shown in Fig. 6“9b. If y(t) is the first-mentioned
trajectory, then the smoothed trajectory will be

\

.
z(t) = v ds y(t – s)e–vs, (150)

o

where v is the reciprocal of the time constant for the exponential decay.
The weighting function

W(t) = ve–’~ (1,51)
has for its transfer function

Y(2Tjj) = , +“2Tjf. (152)

If G,(j) is the spectral density of Y, the spectral density of z will then be
[Eq, (93)]

v’
Gz(fl = v, + (Zmf)z G.(j). (153)

Our problem is therefore to determine the spectrum of y. Unfor-
tunately, the function y wanders 1 1 I

I
without bound in the course of its I I
history and cannot be considered ~ ~

{
I

as a member of a stationary ran- I {

dom process. On the other hand, ‘.,, ~
I 1
I

in the applications to be made we

~

(0 Jcurve
#--

‘.
shall be interested not so much in

.
‘.

y as in its derivative. The de- ‘.
‘. I

rivative of y, which will bc des- ‘. I. (~j curve
ignated by z, does belong to a -.~~

w
---

stationary process; it is plotted f14
in Fig. 6.9c. The function z(t) is b Q3 ~3~
of constant value over successive

~’j
1 (c) curve

intervals, and its values over any t in sec ‘

two intervals are independent but ~,o. G.’J—(a)Typical servoinput;(~)expo-
have the same distribution. We ncntiwllysl1100t1ledinput; (c) irlputvclocit~

shall proceed to determine the autocorr(:ltition f~lnctit)n and then the
spectral density for z.

A precise definition of the stationary random prwcss follows:

z(t) = a., for t. s t < ~.+,,
n=o, *l, +2,.’

where the an’s are independent random variables
tribution and the interval lengths

(t.+, – t.) = L

J (154)

ha~’ing the same dis-

(155)
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are likewise independent random variables having the same probability
distribution H(1).

The times . . . , t_2, t_l, to, tl, t?, . . , may, for example, have the
Poisson distribution of shots on a line. In Poisson’s problem each shot
is independently placed on the line until the resultant set has a mean
density of 6 shots per unit length t. The probability that any given
interval of length A contains a shot Cl the set is approximately PA; the
probabilityy that this interval does not contain a shot is (1 – PA). These
expressions become exact as A -+ O. To determine 11(1) in this case we
start at an arbitrary shot and determine the probability that the closest
shot lies within an interval A at a distance 1 to the right. Subdividing
the interval of length 1into subintcr~als of lengths A, it follo~vs that th~
probability of no shot lying within any of the first [(l,~A) – 1]-subintervals
is (I — @A)f1i3J–1,whereas the probability of a shot Iyting ~rithin the last
subinterval is PA. Hence the probability that both of these conditions
are fulfilled is

II(l)A = (1 – ~A)<l’3j–l~A. (156)

Passing to the limit as A = dl approaches zero, one obtains for the Poisson
distribution

H(1) dl = De-fl’ dl, (157)

In order to determine the autocorrelation function it is necessary to
know the probability Q(7) that z(t) and z(t + T) lie in the same defining
interval. The probability Q(7) is equal to the sum over intervals of all
lengths of the probability that t is in an inter}’al of length bet]veen 1
and 1 + dl multiplied by the probability that this interval includes both
t and t + T. The probability that an artibrary point t lies in an interval
of length between 1and 1 + dt can be found as follows. Consider a long
section of the time axis containing, say, K intervals. The total number of
intervals in this section having lengths between 1 and 2 + dl is KH(l) dl,

and their aggregate length is lZ{H(l) dl. The total length of the section

is K
/

M dl lH(Q. The desired probabilityy is equal to that fraction of

the se~tion filled with intervals of length between 1 and 1 + dl:

; H(1) dl,

i=
/

m dl lH(l)
o

(158)

(159)

is the average interval length. The probability that an arbitrary interval
of length 1contains both t and t + r is (1 — ~~1), if 7 < 1. It follo~vs that

(160)
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For the case of the Poisson distribution

i=!
P

and Q(7) = S-@l’l. (161)

It is now an easy matter to determine the autocorrelation function
for z. For a given function of the ensemble

~(t)~(~ + 7) = a: or anan+k, (162)

according as t and t+ T lie in the same interval or in two different inter-
vals. For a given distribution of L’s we first average over the an’s,
Because amis independent of an+k, we get ~ or ii’ respectively for the above
cases. Since the probability that t and t + 7 lie in the same interval is
just Q(r), averaging over all distributions of the tn’s gives

R(T) = Z(t)z(t + T) (163)
= ~2Q(7) + az[l – Q(T)].

The spectrum can now be computed by means of Eq. (76a):

/

.
Gz(j) = 4(7 – ii’) dr Q(T) Cos hf. + 2ii’a(j). (164)

o

If H rather than Q is given, the integral on the right of Eq. (164) can be
expressed as

H
m

zdr (1 – ‘) H(z) cOS%jr, (165). dl —
o i

/

1° - 1 – Cos 27rjl)

‘7 o
dl H(l) ( ~%j), .

Setting

/
Q(j) = “ dl H(l) COS%@, (166)

o
this becomes

I
.

d, Q(,) COS%rf, =
1 – $J(fl ,.

0 (%j)’i
“-.

In the case of the Poisson distribution of points
obtain

Substitution of this into Eqs. (164) and (167) gives

(lot)

(L), with h = O, we

(168)

(169)

in agreement with Eq. (78).



304 STATISTICAL I’ROI’ERTIES OF TIME-VA liIA [il,l{ 1),177A [SW, 6.12

The stationary random process described by Eq. (1) is another speciaI
case of the process described by Eq. (154). In this case

H(l) = 3(1 – 1), ;=+, ~v=l z. (170)

The reader can readily verify that in this case the continuous part of
Eq. (164) checks ~vith Eq, (70).

In order to apply Eq, ( 169) in an aircraft example it will be necessary
to have values for @ and ~. Under present conditions &I, the average

0.06

0.05

0.04

“: 0.03

0.02

001

L-
~loo -75 – 50 –25 o F25 +50 +75 +1 10

Angular velocity in mils/sec

~lG. 6 10,—Probability distribution of angular velocity.

duration of a straight run by an attacking plane may range from 10 to
30 sec. An estimate of a%has been made by considering the distribution
of angular velocities for all straight-line paths in a plane traversed at 150
yd/sec. Only those paths ~vere considered for ~rhich the minimum dis-
tance to the origin was less than 1500 yd; for these paths only that part
from 9000 yd before crossover to 9000 yd after crossover was used. Any
part of a path in which the angular velocity exceeded ~ radian/see was
omitted. Aside from these restrictions, portions of paths included in like
areas in the plane were weighted equally. The resulting probability
distribution M(d) is plotted in Fig. 610. For this distribution the mean-
square angular velocity ~ is 2.62 X 103 (mils/see) 2; the rms angular
velocity is 51 mils/sec.

1Crossover is that point on a straight-line path for which the distance to the
origin is a minimum,
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6.13. Potentiometer Noise.—It sometimes happens that the input tu
a servo is a voltage determined by a potentiometer setting; for instance,
the automatic-tracking radar system output may drive a potentiometer,
the output voltage of which is used as the input to a computer servo-
mechanism. The transmitted voltage \vould be a faithful reproduction
of the tracking-servo output if it ~verenot for the finite granulation of the
potentiometer, which introduces into a signal the type of noise that will
be considered in this section.

We shall suppose that the input to the tracking servomechanism is
the input discussed in the previous section and that the errors in follow-
ing by the tracking servomechanism are negligible compared with the
potentiometer resolution; the input to the potentiometer will then be
precisely the original tracking-servomechanism input.

It will be convenient to make a few idealizations \vhich will not
appreciably affect the results. In the first place, since the input is
unbounded, let us suppose that the potentiometer is an infinite helical
potentiometer. Let us suppose further that the \vinding steps are uni-
formly A roils apart and that when the velocity of the input is a mils/see,
the potentiometer output differs from the input by a sinusoid of fre-
quency a/A cps and amplitude A/2 roils.

The potentiometer input has already been discussed in the previous
section. Its velocity, given by Eq. (154), assumes independent constant
values over a sequence of intervals. Let the probability distribution for
these angular velocities be denoted by -itZ(a) and let

;=O. (171)

The potentiometer output will be the original input plus sections of
sinusoids, all of amplitude A/2. In fact, if 0, is the original input, then
the noise term in the output will be precisely

(172)

The functions z(t) constitute a stationary random process, It is evident
that the phases of adjacent segments of sinusoids are related, since z is
continuous. For intervals long compared with the sinusoid period
A/a, this correlation of phases will have little effect; therefore in obtaining
the autocorrelation function we shall assume that the phases of adjoining
sinusoidal segments are independent.

The autocorrelation function of-the noise is the ensemble average of

z(t)z(t + 7) = ~z sin (!kr.flt+ IA) sin [%f2(~ + 7), + 1#121. (173)

Here +1 = 1#12and f, = .fZ = a/A if t and t + r are in the same segment,
and fl is independent of fz and 41 is independent of & if t and t -I- T lie in
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different segments. Cases for which t and t + 7 lie in dhlerent segments
do not contribute to the autocorrelation function as one sees by averaging
~1 and dz independently. When tand t+ T lie in the same segment, one
can average over all phases ~ for a given frequency j = .fI = jZ t~ get
(A’/8) cos 2irfr. Averaging over all frequencies then gives

(A3/8) f_”~ df M(Af) COS2rfr.

To obtain the autocorrelation function this must now be multiplied by
the probability that t and t+ T lie in the same interval:

(174)

where Q is defined as in 13q. (160).
Wc can no~v obtain the spectral density by applying Eqs. (76):

This can be rewritten as

The function G,(f) is the Fourier transform of the product of two functions
and is therefore equal to the convolution of their transforms. The proof
of thk statement is similar to that of the conv oiuti on theorem for the
Laplace transform given in Chap. 2. If we now assume Jlf(A~) to be an
even function, then

/

.
.l!f(Af) =

/
d~ ~-2T,J, m df ,11(Af ) (’0S 2rfT. (177)

—. —.
We thus find

\

,m
G,(f) = $ _ ~ ds K(S) M[A(f – s)], (178)

where
.

K(f) = ~ d, Q(,) COS2~f7. (179)
o

For purposes of illustration, let us SUPPOWthat (1) the potentiometer
is wound in steps of A = 1 roil, (2) the probability distribution of angular
velocities M(d) is the distribution plotted in Fig. 6.10, and (3) the set of
points where a change in velocity of the input occurs is the Poisson dis-
tribution of shots on a line. As we have seen in the previous section,
Q(7) = e-~1’1,where @is the mean density of shots. It follows that

(180)
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Applying Eq. (178), weseethat G.(j) isaweighted average of M(Aj).
The total weight for this averaging process is

(181)

If B = 0.1 see–l, K($) attenuates very rapidly ;in fact half of its area is
in a frequency band of 0.032 cps about the origin. Hence its action as a
weighting function on M(Af) is much like that of a delta function when A
is less than 1 roil. For such A,

G.(j) = : M(Aj). (182)

For A = 1 roil, the distribution function M(Aj) is sufficiently flat, for
frequencies less than 5 cps, for G,(f) to be treated as a spectral density of
a purely random process in servomechanism problems (see Sec. 6.11).

In order to complete this study of potentiometer noise it will be
necessary to compute the cross-correlation function. In the usual
servomechanism application the error depends on the noise and the
derivative of the input signal. (See, for instance, the example of Sec.
6.10.) It will therefore be sufficient to find the cross-correlation function
between the derivative of the input and the noise. This has the advan-
tage of enabling us to work with stationary random processes.

The derivative of the input, 8,, has been carefully defined in 13q. (154).
For purposes of the present calculation we must be equally precise about,
& itself. In order that z(t) be a stationary random process it is necessary
that all possible functions z(t) bc represented in the ensemble. This
will be so if to a definite 8,, defined by a given set of constants ,
a–l, ao, al, az, . . . and a given sequence of times’. . . , t–,, t~, /,,
h,. ... there corresponds a set of inputs 0, defined by

/

t
e,(t) = [/s e,(s) + C#l, (183)

o

where the ‘( phase angle” @ takes on all of the values in the interval
(O, A) with equal likelihood.

The cross-correlation function is the ensemble average of the quan-
tities

‘(’’’l(’+’)‘Xsinz+w+’) (184)
.

If one averages over all inputs 0, that correspond to m definite 0,, that is.

over all phase angles O, it is clear that the average will vanish. The

ensemble average is then the average of this zero average over all possi-

ble 81; the cross-correlation function therefore ~anishes identically.
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different segments. Cases for which t and t + , lie in different segments
do not contribute to the autocorrelation function as one sees by averaging
I#Jland +2 independently. When t and t + r lie in the same segment, one
can average over all phases @ for a given frequency j = jl = ~Z tG get
(A’/8) cos %j.. Averaging over all frequencies then gives

(A’/8)
/

_m~d.. M(Aj) COS %j,.

To obtain the autocorrelation function this must now be multiplied by
the probability that t and t + 7 lie in the same interval:

R(T) = ; Q(,)
/

.
df M(Aj) COS %TfT, (174)

—.

where Q is defined as in Eq. (160).
We can now obtain the spectral density by applying Eqs. (76):

/
G.(j) = 4 “

o “cOs%f’[:Q(’’/fJf(A~)c‘17
This can be rewritten as

The function G.(j) is the Fourier transf orm of the product of two functions
and is therefore equal to the convolution of their transforms. The proof
of this statement is similar to that of the convolution theorem for the
Laplace transform given in Chap. 2. If ~ve nwv assume flf(Aj) to be an
even function, then

/
M(Aj) = m

/
d~ ~–2@7 m (ifJlf(Aj) COS 27rj,. (177)

—. —.
We thus find

G.(j) = >3 /_” ds K(S) itf[A(j – s)], (178)
.

where

/
K(j) = - d. Q(T) COS %rjT. (179)

o

For purposes of illustration, let us suppose that (1) the potentiometer
is wound in steps of A = 1 roil, (2) the probability distribution of angular
velocities M(d) is the distribution plotted in Fig. 6“10, and (3) the set of
points where a change in velocity of the input occurs is the Poisson dis-
tribution of shots on a line. As we have seen in the previous section,
Q(7) = e-~l’l, where@ is the mean density of shots. It follows that

(180)
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We now come to the question of what kind of output is desirable for
the servo. If it were not for the presence of uncontrolled disturbances
in the input, our goal would be to make the output follow the input
perfectly. In the presence of these disturbances, however, perfect
following of the input involves at least good, if not perfect, following of the
noise. It is apparent that a compromise must be made between faithfully

,follom”ng the input signal and ignoring the noise.

Since a compromise must be made, it is necessary that we have a
criterion of goodness or figure of merit for any given design. In order
to be of use, such a figure of merit must be in reasonable accord with
practical requirements, it must be of general applicability, and it must
not be difficult to apply. The wide variety of servo problems precludes
a criterion of goodness that is universally applicable. Even when a
criterion is not strictly applicable, design methods based upon it can
often furnish useful information. A further requirement for the figure
of merit is that it be unaffected by unlikely short-lived aberrations from
the mean or shifts in the time axis; instead, it should be a measure of the
average behavior of the servo. This is in accordance with the statistical
nature of the actual input and of the noise. We shall here limit ourselves
to a single figure of merit, the rms error in following. If Oris the input
signal to be followed, if & is the output, and if e = & — 00 is the error in

following, then the rms error is %@, where

/

lT~=lim _ dt e’(t).
l’+. 2T –T

(1)

We shall consider that servo best which minimizes the rms error.

The rms figure of merit has been used in many types of problem.
Its use in this chapter was inspired by N. Wiener’s work on the extrapola-
tion, interpolation, and smoothing of stationary time series. 1 The idea
of applying the integrated-square-error criterion to servo design has also
been considered by A. C. Hall.z One of the reasons for the wide usage
of the rms criterion stems from its mathematical convenience; there is a
highly developed body of mathematical knowledge that has been built
around the notion of a mean-square value-the harmonic analysis
described in Chap. 6.

The rms-error criterion weights the undesirability of an error accord-
ing to the square of its magnitude, as indicated in Fig. 7“la, and this
independently of the time at which the error occurs. In general such a
weighting is adequate whenever the undesirability of an error grows

I N. Wiener, The Extrapolation, Interpolation, and Smoothing of Stationwy Time
Series,NDRC Report, Cambridge, Mass., 1942.

2A. C. Hall, The Analysis and Synthesis of Linear Servomechanisms, Massa-
chusetts Institute of Technology Press, Cambridge, Mass,, 1943, pp. 19-25.
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with its magnitude. There are, however, cases where this weighting
would not be suitable. If, for example, all sufficiently large errors were
equally bad, it would be necessary to have a weighting similar to that
shown in Fig. 7. lb, Alor is it always true that the undesirability of an
error is independent of the time at which that error occurs. For instance,

an error during a transition from

/
one mode of operation to another

Weight Weight

Mk

may be more or less desirable than
an error during a given mode of
operational

When applicable, a figure of
merit such as the rms error is ex-
ccechngly useful. By means of it

Error Error one can determine the “ best” sys-
(U) (b) tern possible under suitably re-

1’IG. 7.1.—(IZ) ,s(JU<lrc-error weig}lting; strictive conditions. Thus if the
(h) nonw]uarc.error wcightmg.

only limitation is that the system
bc a linear filter, one can find the best such filtrr by a method developed
by Wicmer.’ 13ven if such a filter cannot be realized in the form of a servo,
it \till still bc of great interest to know ho}v WC1lthe rms error of the
realized servo approximates the rms error of the ideally })est filter.

As JVChave seen, the servo must compromise bctlvecu following the
signal and smoothing out the noise. Irurthermore, the output is al~vays
po!vcrcd by a source external to the input. 1t is reasonable to ask why
these ttvo operations, smoothing and follolving ]rith increased power,
could not bc done in series, ‘~h~t is, \vl]ynot first send the input t~~rough

‘~ If the only source of:1 filter that sep~r:itc,s the signal from ihc nuisc.
noise is in the input, signal, this is indeed feasible. If, however, the dis-
turbancrs arise in the loading or at an int crier point of the servomecha-
nism, then tlm smm)thing must Ijc dfmc in t}lc srrvo itself. There is
still an{~th[,rdifhcolty ij-ith filtcrirl~ the bigna] first. In practice there is a
limit to the :wcuracy J\ith l\”hi(’11 a filt,(r can lx: made. In particular, if
the input range is cxccssivr, tllc uutl)llt of the filter will not }W sufficiently
accurate. Ncvcrthclcss, Irhcrcvcr p(JS,Sibk!,it is \\-cllto purify the input
by firstsending it throllg}l a filter, Since the servo will in any case act
as a filter, its characteristics ]rill have to h taken into account in the
prefiltcring

The tiesign procwlurc to lx described in this chapter is basically
simple ad st,r:~ightforlrwd. In pmct icc it is difficult to realize a given

I ‘rral,sicr,ts call III: trcatrd i}) a mwln[~r similar to the proccdurc used for the
mean-square error. In this C:M, tl]c i]itcgr:~tcd-s(l~larc error in the transient is
computed (SW:frmtmotc 011p. 3 14).

‘ Scc Wicucr, op. ci~.



SEC. 71] PRELI,!41NARY DISCUSSION OF THE METHOD 311

weighting function as an electrical network, to say nothing of realizing
it as a servomechanism. It is much more practical to start with a servo
of a given type having certain adjustable parameters. The mean-square
error can then be computed as the integral of the error spectral density
directly from integral tables. This mean-square error will, of course,
depend on the adjustable parameters of the servo; the best servo of the
given type is then determined by finding the parameter values that
minimize the mean-square error.

It is worth remarking that the method proposed jor jinding the rms

error does not involve solving for the roots of the characteristic equation of the
differential equation describing the servo. As a result, this method has a
great advantage over the familiar transient analysis approach, which
requires the use of a differential analyzer to handle effectively problems
that have characteristic equations of degree five or higher. IWost of the
discussion is concerned with reducing the error spectral density to a form
suitable for the use of the integral tables. The error spectral density is
first expressed as a function of the error-signal transfer function, the
error-noise transfer function, and the elements of the signal-noise spectral-
density matrix. Since the servo is a stable lumped-constant system, the
transfer functions are rational functions of the frequency. N’ow use of
the integral tables requires that the error spectral density be expressed
as the sum of squares of absolute values of rational functions. Thisj in
turn, requires that the elements of the spectral-density matrix be approxi-
mated by rational functions. It is shown in Sec. 7“4 that the spectral-
density matrix elements can always be so approximated.

The use of the integration tables is straightforward, and there are
standard procedures for minimizing the resulting expression with respect
to the servo parameters. The method is illustrated by two servo-
mechanisms, one of which was independently designed by experimental
methods. The results of the theoretical and experimental procedures
are in good agreement. A final section of the chapter is devoted to the
method used in deriving the table of integrals.

Although the present discussion deals ordy with servomechanisms
with a continuous flow of data, it will be evident to the reader that servo-
mechanisms with pulsed data can be treated similarly. The necessary
machinery for the discussion of pulsed servos has already been developed
in Chaps. 5 and 6.1

It is well to add a word about the dkxuivantages of the method pro-
posed in this chapter. In the first place, it is assumed that the mathe-
matical representations of the different parts of the servo system are

1In applying the rms-error criterion to the pulsed servo it is convenient to work
with the complex variable z = ezrjf~~ on the unit circle rather than with the real
variable f k the interval ( – 1/2 T,, l/2T,),
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known. In practice it may be difficult to determine the constants
required for such a representation. The steady-state analysis of Chap. 4
does not require a knowledge of these values, requiring instead only that
measurements be made on the stead y-st ate response of the syst cm.
Another difficulty lies in the fact that it is necessary to start with a proper
type of equalizer. The steady-state design principles of Chap. 4 can be
employed in the choice of a good type of equalizer; the rms-error analysis
can then be used to make the final adjustments of the constants. Lastly,
one might complain that this procedure works only with the rms error
and furnishes no insight into what goes on in the mechanism when
the equalizer and input parameters are varied. On the other hand there
is nothing to prevent one from studying the decibel–log-frequency dia-
grams as a function of these parameters; this, in fact, has been done for
two common servo types in chap. 8.

7.2. Mathematical Formulation of the RMS Error.—In this section
we shall obtain an expression for the rms error in terms of the transfer
functions characterizing the servomechanism and the spectral densities
characterizing the input signal and noise. We shall start with the
assumption that the servomechanism is a linear filter and that the error
can be represented as the sum of a linear operator acting on the input
signal plus a linear operator acting on the noise. In symbols, this
assumption takes the form

\

m

/

.

6(1)== (is 0,(( – s) u-,(s) + ds 6,v(1 – s) W,(S),
o–

(2)
o–

!vhere d~(t) is the noise record and, M in Ghap. 2, the W,(~) (i = 1. 2) are
stable weighting functions satisfying the conditions,

JVi(t)= O for t < (),

/

.
dt lW,(t)[ < m,

I

[i = 1, 2).

o–

(3)

This is the usual linear assumption; it will be valid provided that such
nonlinear effects as saturation, backlash, and stiction are negligible, and
provided that there is no interaction between input and noise.

The two weighting functions W, and Wz will generally be different
and will depend on the way in which the input and noise enter the system.
If the input and noise enter the system at the same point, then the output
depends in the same way on both. In this case if W(L) is the weighting
function for the over-all system, then

/

.
co(t)= ds [~,(t – .s) + e~(t – s)]~(s). (4)

o–
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It follows that

/

.
f(t) = o,(t) – ds th(t – S)W(S) –

/
m (is e.x(t – S)w(.s). (5)

n– o–

Hence, in this case,
w,(t) = a(t) – w(t),
w,(t) = – w(t). }

(6)

If the servo is subject to a random load disturbance, then still a different
relation will exist between WI and Wz.

We shall now make use of the harmonic analysis developed in chap. 6.
we set

/

T
A,(j) = dt C(t)e–~riJ’ (7)

–T

and similarly define 11~($) and Cr( j) to be the Fourier transforms of

o,(t) and ~~(t), respectively, over the limited range ( – ?’, 2’). Then, as
in Sec. 6.7, the spectral density of c is defined as

G.(.f)= $+mm~ IATU)12. (8)

Similar definitions hold for G,(f) and G&f), the spectral densities of
81and o.N,respectively. The cross-spectral density is defined as

Gw(f) = ;&m ~ WWTU)) (9)

from which it follows that

G,)/(j) = G~,(f) = G~~(–f). (lo)

Finally the input-noise spectral-density matrix is defined as

[
GO GIN(f)1G(f) = GN1(f) G.M) “

It is evident that*
G(f) = ~“(~) = G*(–~).

(11)

(12)

It was shown in Sec. 6“7 that the mean-square value of the error can
be computed as the integral of its spectral density over all nonnegative
frequencies. Since the spectral density is an even function of frequency,
we may write

r.
(13)

Thus our problem is reduced to that of obtaining a suitable expression
for the error spectral density.

I The symbol ~ denotes the transpose of the matrix G.



Taking the Fourier transform of both sides of liq. (2) ~vith functions
19~and 6N, t~hicb vanish outside the interval ( – T, 7’), v’e obtain, ap-
proximately,

.4,(j) = l“, (2~jf)Bl (j) + F,(27rjf)C’1(~). (14)

Here the transfer functions }-t arc, of course, the F{nlricr translorms ci’
the weighting f~mct,ions TV,:

‘1’o obtain tkw crr~lr spectra] density ire ncwd only tala’ 117’ times the
absolute value s(lllarcd of .l~(, f), given in ]{kl. (1-4):

1 ‘} ’L(2T.joBr’(,/) + 1’,(27rjJ’’)C’7(,ol’.~<(.1) = ~!:yx ~Tl (16)

‘his equation can be re\\”rittenin tcrrnh ()[IIlt’ck,m(,nts of tllrspe[”tral-

dcnsity mxtrix as t’ollolrs:

Asshownin Sec. 69, this result can bcclerivedbyamore rigorous argu-
ment. It is ~rorth remarking that forsufficicntly large T the expression
on the right-hand side of 13q. (l(i) approxim~tes closely tofl,(j). Hence,
lk~. (16) ~vithout thelimits ymbolcan be used to rompllte G,(f) I~hen d,
and OXarc obtained experimentally.

Combining ICqs. (13) and (17), we nolr have an cxprcssiou for the
reran-square error in terms of the transfer functions, characterizing the
servo sl,stcm, and the elements of the input-noise spectral-dentiity matrix,

characterizing the inputs. 1 The transfer functions ~vill usually be
related. For instance, YI = 1 + 1“?, in accordance Jvith I;q. (0), ~~hen
the signal and the noise enter the systcm at the same point. Our next
problem is to find the transfer functions that minimize thr mean+ quare
error, allowing, of course, for the intcrdcpcndence of the 1“s.

It is interesting to see the physical significance of this minimization
problem. The quantity on the right of Eq. (17), the integral of which
wc wish to minimize, weights the frequency-transfer functions at a given

I The integrated-square error can be given in a form similar to the rncan-square
error. Suppose, for instance, that the input and noise vanish for ~ <0 and that
their I,aplacc transforms are (31(p) and e.,,(p). respectively. Then

\

.

/

.
d [C(t)]z= df IY,(2~jf)e, (2~j’) + Y,(2qf)H\-(2~jf) l’.

0 —.

The iutegrated-square error is a measure of the transient responsr if the input is,
for example, a step function and noise is not present.
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frequency according tothe relative importance of that frequency in the
signal and noise. This is precisely the kind of relation which is needed
for a quantitative extension of the steady-state design methods of Chap. 4.
Furthermore we have an experimental check on the reliability of Eq. (17),
for in the example of Sec. 6.10 we were able to compare an experimentally
obtained autocorrelation function with one determined by Eq. (Ii’).

7.3. Nature of the Transfer Function. -In minimizing the rms error
it is, of course, possible to seek the ideal transfer functions. This
involves a rather long computation; even when one has determined the
ideal transfer functions, there remains the difficult task of realizing them.
In practice it is more convenient to choose a suitable type of filter with
certain adjustable elements and then to determine the best possible
adjustment of these elements. We shall therefore start with a given
family of transfer functions and find that transfer function of this set
which minimizes the mean-square error.

This filter will consist of a network of lumped elements, some of which
are adjustable. Such a filter can always be represented by a differential
equation of the form

A,,(’) + A, J”-1) + . “ . + A., = Bee,@” + B,e,(”-” + . . + I?mo,

+ C,e.$ + C,O\-” + . + cltJN,

(18)

where m, 1 s n; y(k) denotes the kth derivative of y with respect to time t.
The numerical coefficients A, B, c are all real and depend on the adjust-
able parameters. For any given servomechanism, each of the com-
ponents can be represented by a differential equation with certain driving
functions. By combining these equations one can eliminate all functions
except C, &, and ON. The resulting differential equation will be of the
form of Eq. (18). As shown in Chap. 2, the transfer functions for the
weighting functions WI and WZ, described in the previous section, are

.

1 131(27rjj)m-’
ico ?n

2
Ai(27rjj)”-i

ieo I (19)

i=O /

If the performance of a filter is to be at all satisfactory, it must be
stable. This, of course, is assured if the filter contains only passive ele-
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ments. The servo, on the other hand, is a special kind of filter, contain-
ing active elements and a feedback; it is therefore possible for a seNo
system to become unstable and oscillate. Whether or not the system is
unstable will usually depend on the adjustment of certain quantities in
the equalizer, such as the amplifier gain, and the magnitudes of certain
of the resistances and capacitances. For some values of these parameters
the system will oscillate, but for others it will not oscillate. The set of
all values of the parameters for which the system does not oscillate will
be called the region of stability.

As was shown in Chap. 2, the system will be stable if, and only if, the
roots of the polynomial

.

H(f) = z‘4, (27rjf)”-’ (20)
i=o

lie in the upper half plane. NTOWthe roots are continuous functions of
the coefficients A~ of If(j). Hence, as the coefficients are continuous] y
varied, the system can go from a stable to an unstable state if, and only
if, at least one root assumes a value on the real axis. Since the coefficients
are continuous functions of the parameters, the above statement is like-
wise true of these parameters. It follows that in the space of parameters
the region of stability will be bounded by those values of the parameters
for which the roots of the polynomial H(j) lie on the rwd axis.

In the polynomial H(f)j A,, the coefficient of (2TjJ) ‘-k, is real, ~on-
sequently the roots of H(j) = O are symmetrically situatrd about the
imaginary axis. That is, they are either pure imaginaries or occur in
conjugate pairs of the type (jv f u), where o and u are real. If a root i-k

lies on the real axis, there are two possibilities: 13ithrr rk = O, or there is
a second real root r; such that r~ = —rk. If r~ = O, then the product of
all roots will vanish and we will have .4,, = O. If rk is real and nonzero,

then the product of sums of all pairs of roots, ~ (ri + r~), ~vill vanish.
i<k

It follows that the boundary of the region of stability is contained in the
surface defined by

.4. n (r, + rk) = O. (21)
i<k

An explicit expression for this surface in terms of the coeilicients of H(j)
can be found by the methods of Sec. 7.9 [see Eqs. (lo4) and (105)].

Not all points on this surface are boundary points of the region of
stability, since (T; + r~) can vanish without ri being real. It remains to
be determined which of the bounded regions are actually regions of
stability. It is clear that either all points in each such bounded domain
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correspond to stable states of the system or all points correspond to
unstable states. The stability of each domain is therefore determined
hythe stability of asingle point in that domain. Each domain can thus
be tested at a single point by means of the Routh criterion or the Nyquist
criterion (see Chap. 2).

7.4. Reduction of the Error Speclral Density to a Convenient Form.—
As we have seen, the mean-square error can be expressed as the integral
of the error spectral density. Our next step is to put G,(f) into a form
amenable to computation. We shall make use of Eq. (17) ~ in which
G,(f) is given in terms of the transfer functions and the elements of the
input-noise spectral-density matrix. Since we have limited ourselves
to filters of lumped elements, the transfer functions will be of the form
shown in Eq. (19); each Y is a rational function with poles in the upper
half plane, symmetrically placed about the imaginary axis. 1 It is there-
fore convenient and natural to attempt to express G,(j) as the square
of the absolute value of such a rational function in j or as the sum of such
expressions. It will be shown in Sec. 7”6 that this is, in fact, a convenient
form for the integration.

In many problems the elements of the spectral-density matrix ~vill
be known rational functions. In such cases it is relatively easy to bring
G, into the desired form. When, however, the matrix elements are not
rational functions or are known only experimentally, approximations
will be required in the treatment. We shall now discuss each of these
cases in detail.

Reduction when the Elements of G .4 re Rational Functions .—Suppose
first that the elements of the spectral-density matrix are rational func-
tions. We shall show how to express G, as a sum of terms, each of which
is the absolute value squared of a rational function with all poles in the
upper half plane, syrpmetrically placed about the imaginary axis.

Since G,(f) is rational, it can be expressed as the product of two
rational factors XII (f) and Zl 1(f ) such that Xl I has for its zeros and
poles those of G, in the upper half p!ane and Zll has for its zeros and poles
those of Gr in the lower half plane.

Gdj) = XH(j)z,,(fl. (22)

Since Gl(f) is real valued for real j, both its zeros and poles must be sym-
metric in pairs with respect to the real axis; since it is an even function of
j, both its zeros and poles must be symmetrically placed about the
imaginary axis. The zeros and poles of X,, will also be symmetrically
placed about the imaginary axis. Furthermore, by properly choosing

I The poles of Y will be symmetrically placed about the imaginary axis if, mnd
only if, the coeffirirnt,s A ~ of If(f) [see Eq. (20)] are realwdlled.
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constant factors one can write

x,,(j) = z?,(j) = X,( –f) (23)

for real values off. Then

Gdj) = Ix,l(j)l’. (24)

Thus the first term of G,, namely, IY1(21rjj) 12G~(j), has the desired form.
Similarly, one can write

G.v(f) = lX,,(f) l’, (25)

with the zeros and poles of XZZ in the upper half plane, symmetrically
placed about the imaginary axis.

It remains to show that the last two terms of G,, namely,

Y~(fijf)Gr.\r(~) Y2(2~j”) + Y~(%jj)G.v,(.f) l“~(2Tjj),

can be brought into the desired form. lVe shall treat these cross-spectral
terms together. In the first place, it is evident from Eq. (6.89) that
G1~(j) is the Fourier transform of a real-valued function, the cross-
correlation function RIN(7). It follows that both the zeros and the poles
of Gr&f) are symmetrically placed about the imaginary axis. Let us now
factor G,i@ into two rational factors X,,(f) and Z,,(f) such that X,2 has
for its zeros and poles those of G,~ in the upper half plane, and 21, has
for its zeros and poles those of G,.v in the lower half plane:

G,.}(f) = Xr,Z(f)Z,Z(.f). (26)

For each factor, both the zeros and the poles will likewise be s-ymmetri-
cally placed about the
rational factors X21 and

From Ilq. (644)

it follows that

imaginary axis. We can similarly define the
Zzl of G.,,:

G.vr(f) = X21(.f)Z21(.f). (27)

R,N(T) = I?.V,(-7) ; (28)

/

.
G,>,(u + j,) = 2 h R~.v(7)e–2r’cu+j*J

—.

/

.

. 2 dr RX,(r) e~r,(U+,U)r (29)
—m

= G;,(u – jL).

Hence the zeros and the poles of G,~(j) are the complex conjugates of
the zeros and the poles of G.~-~(f). Furthermore we can therefore con-
clude from Eq. (29) that

X,2(U + jv) = Z;, (?J – jv) (30a)
znd
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Z,,(u+j)) = X;,(u–jz)). (30b)

Hence, for real values of j,

Gin(j) = X12(j) Xi, (j) = G},(j). (31)

FinallY, we note that the poles for each expression Y,(2hrjj)X,z(j)
and Yj(2trjf)XZl(j) lie in the upper half plane and are symmetrically
placed about the imaginary axis. We can therefore express G,(j) in the
desired form as

G,(f) = IY,X,,I’ + IY2X221’
+ +IY1X12 + Y2X211‘ – ~[Y,X,, – Y,X,,12. (32)

Reduction when G 1.s Given by Experimental Data.—A reasonably
simple method is available for reducing the error spectral density to the
desired form when the spectral densities are obtained from experimental
data. As is mentioned in Sec. 7.2, in this case the error spectral density
can be written as

Gt(~) = + IY1(Z7VY)BTU) + Y2(%rj~)c,(j)12. (3)

To suit the needs of the following method of approximation, let us suppose

that o,(t) and d~(t)have been determined for the time range (0,27’) and
that the limits of the integrals defining B, and C. [Eq. (7)] are Oand 2T.
It will be our purpose to obtain rational-function approximations for B,
and CT, with poles all in the upper half plane and symmetrically placed
about the imaginary axis. It is clear that by substituting these approxi-
mations into Eq. (33) we will bring G, into the desired form.

The usual technique in making such an approximation is to approxi-
mate the function by a finite partial expansion in terms of a complete
orthonormal set of functions. The Fourier transforms of the Laguerre
functional is a suitable set of orthonormal functions. The kth Laguerre
function can be written as

vzk+>~~k
Lk(t) = e-’ ~ – ~(~:;;’ + “ “ + [;.2:-;;:;; (– 1)’ . . ~

The Fourier transform of Lk is simply
+ 2“(-1 )’). (34)

(1 – 2Tjj)’
‘k(f) = w (1 + 27Tjf)’+’”

(35)

This function has its only pole in the upper half plane and on the imagi-
nary axis; it is thus satisfactory for our purposes. Furthermore, since
the Laguerre functions form a complete orthonormal set for functions
that vanish for t <0, it follows that their transforms can approximate

1N. Wiener, op. cit.
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to any desired accuracy the transforms of such functions. Hence we can
approximate B,(j) by

N

a,(f) =
2

Cklk(j-), (36)
k=O

where

ck =
/

m ~f ~T(m(f). (37)
—m

A similar approximation may be used for CT(j). Another, and perhaps
a more convenient, way of obtaining the coefficients ck follows from the
fact that the bilinear form of Eq. (37) does not change its value if the
functions are replaced by their Fourier transforms. Hence

/

2T
~k = dt &(t)L,(t), (38)

o

It is evident that the series of Eq. (36) will not converge rapidly unless
the time scale is so adjusted that 2’ is of the order of 1; even then the
convergence may be slow.

General Reduction of G.—If the elements of the spectral-density
matrix are not rational functions, one tries to obtain a suitable rational-
function approximation for these elements and thus reduce the general
case to the rational-function case already considered. For instance,
when the elements are analytic except for poles, one can frequently get
such an approximation by taking the sum of the principal parts of each
matrix element at a finite set of poles symmetrically placed about the
imaginary axis.

Another method for accomplishing this end involves factoring the
spectal-density matrix G into two factors X and Z:

G = XZ. (39)

The elements of X are analytic and bounded in the lower half plane,
whereas those of Z are analytic and bounded in the upper half plane. In
addition, for real values of ~

x(f) = X’(–f) (40)
and

X(J-) = z’(j).
By Eq. (41)

(41)

G= Xx’ (42)

for real values off. It is sufficient, therefore, to obtain suitable rational-
function approximations for the elements of X. Because the elements
of X are analytic and bounded in the lower half plane and becauw
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of the condition expressed by Eq. (40), it is possible to make these
approximations.

Factoring the spectral-density matrix is unfortunately a very tedious
and, for most engineering applications, an impractical task. For details
of this factoring process the reader is referred to the previously cited
memoir by Wiener.

7.6. A Simple Servo Problem.—It will be instructive to apply these
ideas to a simple servomechanism to be used in driving a heavy gun mount
in train. We shall suppose that the targets are essentially stationary
but that the gun is required to slew rapidly from one target to the next
closest. The input will be a series of step displacements through random
angles, occurring in some random fashion in time. The input can then
be expressed as

e,(t) =
z

Cku(t — h), (43)
k

where u(t) “is a unit-step function:

u(t) = o for t <0,
=1 for t ~ O. }

(44)

The intervals (ti – L,) are independent random variables all having the
same distribution, and the c’s are likewise independent random variables
all having the same distribution.

It is clear that 0, defines a random process. Its derivative is, in fact,

one of the purely random stationary processes discussed in Sec. 6.11 and

was shown there to have the spectral density

G,(f) = 2&, (45)

where P is the mean density of the t’s and u is the mean-square value of
the C’S. (We here assume that the mean value of the c’s is zero.) We
shall see in the present problem that we need to know the spectral density
for the input derivative [Eq. (45)], rather than the spectral density of
the input itself. The subscript I denotes the input derivative in this
section.

Let us now suppose that there is a noise source within, the error-meas-
uring device, such that the output of the differential is (@I – L90+ ON),
where ON is the noise function. For purposes of simplicity we shall
assume that ONis a purely random stationary process having a spectral
density

Gx(j) = N. (46)

Finally, we shall assume that the noise and the derivative of the signal
are uncorrelated:

Gw(fl = O. (47)
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In the design of this servomechanism we shall limit ourselves to an
equalizer with a fixed time delay Z’1 and an adjustable gain III. The
output voltage V of the equalizer is then determined by

,
2’,: + v = K,(e + e.). (48)

As was shown in Chap. 3, the equation of motion of the motor is

J ~fu+~,@. K3V
dt’ dt ‘

(49)

where J is the rotor-plus-output inertia, hrz is the back-emf and viscous-
damping factor, and K3 is the output torque pe~ volt input. If we now
set 2’2 = J/K2 and combine Eqs. (48) and (49), we obtain

KIK,
T1T2d; +( T1+T2)$+$+re

K,K,
.T,T2~#+(T1+T2)y+3 –~ eff, (50)

This, then, is the differential equation of the servo. The only adjustable
parameter is K,.

It will be noted that the servo differential equation depends only
upon the noise and the derivative of the input. Hence the spectral density
of the input derivative and the associated transfer function take the
place in our analysis of the usual input spectral density and its transfer
function. Equation (17) can then be written as

G,(j) = IY,(2mjf) I’G,(f) + I1’2(Wf)1’G.V(f), (51)
where

Y,(27rjj) =
T17’2(27rjf)’ + (T, + T2)(2m.ij) + 1.

T, T,(27rj~)3 + (T, + T,)(%rjj)2 + (%r~j) + ‘~
)

and
K,K,

1

(52)
—

Y,(27rjf) =
Kz

K,K,
T, T,(27rjj)3 + (T, + T,) (%jj)’ + (27rjf) + ~.

Thus G,(j) is already in the desired form, being the sum of two expres-
sions, each of which is the absolute value squared of a rational function
with all poles in the upper half plane, symmetrically placed about the
imaginary axis.

The transfer functions can be put into a more convenient form by a
change of variable. Let
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Z’=T,+ Z’*,

z = %fT, )

(53)

The value of A is fixed and less than or equal to ~ for all positive 2’,, T,;

a represents the adjustable gain. It then follows from 13q. (13) that the
mean-square error is

—2

/

1-
‘=% -.

“x’ + ‘1 .– 2A)!’ + 1 PUT
‘x Ill(jz)’ + (jZ)’ +Jz + al’

/

lm

‘% -. ‘Z lA(jz)3 + (j$’ + jX + alz % ’54)

7.6. Integration of the Error Spectral De’nsity-We have shown that
the mean-square error can be expressed as the integral of the error
spectral density and that G, can be expressed as the square of the absolute
value of a rational function, or the sum of such terms, with poles all in the
upper half plane, symmetrically placed about the imaginary axis. We
shall now see how to obtain a numerical value for the mean-square error
by means of the table of integrals given in the appendix.

Any rational function can be written as the quotient of two poly-
nomials: N(j) /D(f). The above condition on the poles of the rational
function is equivalent to the condition that the roots of D(f) all lie in the
upper half plane and be symmetrically placed about the imaginary axis.
We can therefore express D(j) in factored form as fo~lows:

D(j) = a. rI (j – uk – j~k) ~ (j”+ u, – jh) ~ (j” – j@, (55)

k k 1

where CLO,the coefficient of the highest power in f, can be assumed to be a
real number, The u’s and the u’s are likewise real numbers. If D(j) is
of degree n, then for real values of j

= (–l)”D*(;).

We can therefore write
function as

for any real f.

k

the square of the absolute

yfJ2 = (–l)nl~(j)l’
D(j) D(j) D(–f) ‘

1
(56)

value of our rational

(57)
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We have in this fashion reduced the problem of computing the mean-
square error to that of obtaining the integral of Eq. (57) over all fre-
quencies. The numerator (– I)”lN(j) I‘ is, of course, a polynomial in f.
The contribution of any odd-power term in the numerator to this integral
is zero, since the denominator is an even function off. We need therefore
consider only the even powers in the numerator. Finally, if the mean-
square error is finite, the degree of the numerator N(fl must be less than
the degree of the denominator D(j). It follows that our problem is
solved if we can evaluate integrals of the form

1. = ~.
/ - ‘f h.(f~.~– j)’ZlrJ . .

(58)

where
hn(~) = aofl + alj’-’ + “ - . + a.,
g.(f) = bor-z + blf’”–’ + “ “ “ + b._,,

and the roots of h.(j) all lie in the upper half plane. Explicit formulas
for all integrals of this type for which hn is of degree seven or less are
given in the appendix. The method by which these integrals were
evaluated is presented in Sec. 7.9.

For purposes of illustration, let us now evaluate the mean-square
error for the servo used as an example in the previous section. As can
be seen in Eq. (54), this involves two integrals of the type shown in Eq.
(58). The denominator polynomial is in each case

h(z) = –A’jd – x’ + j.z + a, (59)

the denominator of the transfer functions.
Let us first determine under what conditions the roots of h(x) lie in

the upper half plane. The roots are clearly of the form

TI = J’s,

b=ju+u, I (60)
r’=jv —u,

where s, V, and u are real numbers. Since

:= n~k = –J%(V2 + U2), (61)

it follows that if rl is to lie in the upper half plane (that is, if s > O), then
cc/A >0 and hence a >0. On the other hand, by Eq. (104)

–2jlJ[(s + v)’ + U2] = rl (r, + n) =
–j(l – afi)

A, “ (62)
k <1

consequently if r, and I-3 are to lie in the upper half plane (that is, if
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v > O), it is necessary that a < l/A. The region of stability for this
servo is therefore

0<.<;. (63)

Only when a is within this region of stability can one make use of the
table in the appendix to determine the mean-square error; when a is out-
side the region of stability, the mean-square error is infinite;

The integral table is very easy to use. For instance, in evaluating
the first of the integrals in Eq. (54), one substitutes in the formula for
13, setting

aO=— Aj, b, = A’, \

al= —1, b,=l– 2A,

az = j, b, = 1,

a~ = a. /
One finds that

~= BaTl+a(l– .4)
2a(l – Aa) “

(64)

(65)

This would be the mean-square error in following the input signal in the

absence of noise. It is evident that ~ becomes infinite on the boundaries

of the region of stability. In a similar fashion the second integral can

be evaluated; the contribution of the noise to the mean-square error is

The mean-square error itself is the sum of these two components:

l+a(l– A)+La2~~ = POT
2a(l – Aa) ‘

where

L=>
2&r T2”

(.66)

(67)

(68)

In general the polynomial h.(j) will be the product of two poly-
nomials, one from the signal or noise spectra and the other from the
transfer function. The signal or noise polynomial is fixed once for all;
its roots lie in the upper half plane. On the other hand, the transfer-
function polynomial varies as we vary the equalizer parameters. Its
roots will lie in the upper half plane if, and only if, these parameters lie in
the region of stability.

7.7. Minimizing the Mean-square Error. -We have now obtained an
explicit formula for the mean-square error as a rational function of the
equalizer parameters for values of these parameters inside the region of
stability. The next step is, of course, to obtain the values of the equalizer
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parameters that minimize the mean-square error. These “best” values
can be determined by setting equal to zero the partial derivatives of
the mean-square error with respect to the parameters and solving for
the values of the parameters. Sometimes this process beiomes very
involved; in such cases it is simpler to locate the minimum by direct
exploratory calculations of mean-square-error values. We are also in a
position to study various other properties of the servo. We can, for
instance, determine how sensitive the mean-square error is to small
deviations of the equalizer parameters from their best values. Since it
is often possible to eliminate some of the noise at its source by sufficiently
elaborate filters, it is of interest to see how the minimal mean-square
error varies with the noise level. We can also draw any desired decibel–
log-frequency diagram; this will be of help to the experimentalist whose
principal method of adjustment makes use of the servo steady-state
response.

It will be instructive to apply some of these ideas to the example dis-
cussed in Sees. 7.5 and 7.6. In the previous section we obtained an
expression [Eq. (67)] for the mean-square error:

l+a(l– A)+Laz~~= DOT
2.(1 – A.) ‘-

(67)

In order to find the minimum mean-square error, we differentiate ~ with
mspcct, to the gain parameter a and set the derivative equal to zero. The
resulting equation is quadratic in a. Only one of its two roots,

1

a“=A+~A+L’
(69)

lies in the region of stability. Substituting am into Eq. (67), one obtains
the minimal mean-square error,

(70)

Figure 72 sholvs plots of am and e~/@u~’, as functions of L, for

A = ~ (that is, for 1’, = 7’,). As was to bc expected, the “ best” gain

value decreases as the noise level increases. For no noise whatever (that

is, L = O) and A = ~ the best value of the gain is $. For this minimal
condition, the roots of the characteristic equation are

(–3.276 –0.362 k 1.224j
T’ T )

(71)

The logarithmic decrement for the complex roots is & = 1.85. A graph
of the error response to a unit-step function is shown in Fig. 7.3. Accord-
ing to the usual standards, one would say that the system is a bit under-
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damped. It must be remembered, however, that in this case L = O.

As L increases (.4 remaining equal to ~), the roots of theoptimal-conclj-
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FIG. 7.3.—Error response to unit-step input. A = +,

.ement.

L=O.
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tion characteristic equation vary in the following way: The real root.
decreases slightly in magnitude until for L = 1 it is – (2.99/7’); the real
part of the complex roots increases slightly while the imaginary part
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decreases until for L = 1 the complex roots are ( – 0.50 + 0.85j)/ 2’. Thus
as L increases, the system becomes more damped. A graph of the
logarithmic decrement as a function of L for the optimal conditions is
shown in Fig. 7.2.

7.8. Radar Automatic-tracking Example.—It will bc the purpose of
the present section to apply the rms-error criterion to the practical prob-
lem of radar automatic tracking. We shall determine the “ best” values
of the equalizer parameters for the gyrostabilized tracking mechanism
described in Sec. 610. This system has actually been built and put into
operation. The techniques used in the design of the system were those
described in Chap. 4; the final adjustment of the parameters was made
by trial-and-error methods. As we shall see, the resulting values are
very close to the best values as determined by the rms criterion if certain
restrictions imposed by the mount power drive are taken into account.
This, in effect, furnishes us with an example of the validity of the design
method proposed in this chapter.

In this example, as in that of Sec. 7.5, we may focus attention on the
derivative of the input rather than on the input itself. In Eqs. (6.122)
and (6. 123), the input is tl~,and the factor 2mjf appears in Y1. The
presence of this factor calls our attention to the fact that the servo differ-
ential equation does not involve 01itself but only derivatives of 01. 1“1 Ow,
a transfer function Y operating on the derivative of tl~gives the same
result as the transfer function 2rjfY acting on 01. It follows that in the
error spectral density

G,(j) = \Y,(2mjf)12GI(j) + [Y@j.f)12GN(f)
+ l’T(2rjf)G,,~(f) Y,(2rjf) + Y,(2rjf)GN,(j) Y~(2~jf), (17)

we can take G,(f) as the spectral density of the derivative of O,and G,~(j)
as the cross-spectral density between the derivative of 81and the noise if at
the same time we drop the factor 2mjf from Y, as previously defined,
writ ing

(Z’22=jj + 1)
yI(%j) = ~2(2=jj)2+ (1 + K.T,)2rjj + K.’ (72a)

K.(T,2rjf + 1)
(72b)Y,(2~jf) = T2(2mjj)Z + (1 + K.1’’,)%jf + K.”

This is a necessary change in the point of view because the O, that we
propose to use does not have a well-defined spectral density whereas its
derivative does.

Let us first determine the region of stability for the transfer function
of this servomechanism. This is the set of all parameter values (Z’l,
T,, K,) for which the roots of

H(j) = T2(27rj.f)2+ (1 + KvT,)(2rjf) + K, (73)
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lie in the upper half plane. It will be found that the region of stability is

defined by the inequalities

K* >0,

1 + KoT, >0,

1

(74)

T, >0.

Although the region defined by reversing all these inequalities would also
lead to roots of H(f) in the upper half plane, such a region is ruled out of
consideration by the physical nature of the parameters. We see then that
the system will be stable for all of the inherently positive values of the
parameters. Furthermore, the system does not tend to become unstable
as the gain K. is increased. (In any actual system, however, one finds
that as the gain is increased, this second-order idealization of the servo
breaks down because of nonlinear effects and time lags that are no longer
negligible. )

The principal source of noise in radar tracking is fading. It was
shown in Sec. 6.10 that one can approximate the noise spectral density
by a constant,

G.(j) = N, (75)
where, as in Eq. (6.132),

N = 0.636 milz sec. (76)

The trajectory of the airplane will, in general, have zero correlation with
the fading. Hence we shall assume that G,~(f) and G~,(f) vanish
identically.

Finally, for the servo input we shall use an input of the type studied
in Sec. 6.12 and pictured in Fig. 6.9b. We shall suppose that the time
axis is divided into intervals with end points . , t_.2,t–l, to, tl, t~, . . . ,
that satisfy the conditions for a Poisson distribution with mean density B.
Within each interval the angular velocity approaches a new value
exponentially, wit h time constant 1/V. The values approached do not
depend on any of the previous or subsequent interval values and have a
zero mean and a mean-square value equal to ~. Combining Eqs.
(6.153) and (6.169), we see that

We shall take

(77)

~ = 0.04 see-’
v = 0.10 see–l

)

(78)
~’ = 2.62 X 103 (mils/sec)2

for reasons discussed at the end of Sec. 6.12.
In this case the spectral-density matrix consists only of diagonal

terms. The spectral density GN, being a constant, is already in the form
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required by Sec. 7.4. It is also an easy matter to factor (l], for, as can

be seen by inspection,

G](j) = lxIi(f) l’, (79)
where

2V %@
(80)xll(~) = (, + %jf)(fj + %“f)”

The poles of A’11 lie in the upper half plane on the imaginary axis.
We are now in a position to compute the mean-square error. Since

the cross-spectral density vanishes identically, the mean-square-error
integral becomes the sum of two integrals—one part due to the signal,
?, and another part due to the noise, ~V. The component integrals can be
\vritten as follo\vs:

The integral in Eq. (81) can be brought into the form of Eq. (58) by
taking

h(z) = [– T2x2 + (1 + K. T,)jz + Kvl[(jx + ~)(j~ + p)]
== l’jx~ – j(a + TjS)Za – (K. + atl + T,P)z2

+ j(KoS + @)z + KuP, (83)
where

a = 1 + KmTl,

S= D+P,

1

(84)

P = p..

The evaluation of the integrals [Eqs. (81) and (82)] by means of the
appendix table is then straightforward and leads to the result

a-2Pv aT; + TW + *P (aKV + CY2S+ aTJY + Z%S’P)
T~l. —

as [(K. – T&)’ + (a + T2A’)(KJ’ + c@)] ‘

I

(g~)

~_ N(. –1)’+T*K.
,N – F2

2a ‘
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(86)

There remains the formidable problem of finding positive ralues of
(a, T,, K,) that minimize the mean-square error. Since a direct analytic
solution of the equations obtained by setting the derivatives of ~ equal
to zero is impracticable in this case, one is forced to invent another
approach.

We can gain some insight into the nature of ~ by studying the
asymptotic behavior as the parameters become infinite. If we set

a = C21z,

K. = K,x,

1

(87)
T, = .r,

and take the limit a> z becomes infinite, we obtain a m~lch simplm expres-
sion for ~:

It is not difficult to obtain the minimum of ~ by scmiernpirical mrtho[ls,
Table 7.1 gives the optimal values of (al, A’1), together with deviations
from these values ~vhich cause a 10 per cent incrrase in ~. .1s can bC

Optimal values. 2.54 6.10 0.199 I 0786 I o \)&j

[

1.50 6.10 0 218 ~ 0.875 I ] 093

Nonoptimalvalues. .,
.! 20 6.10

405 I :.::
0 896 1.090

2.54 0,652
9.75 I 0.080 I 1.012 I 1.092

1 ()~)o
2.54

seen, the values of ~ are not very sensitive to variations in (~1, Kl)
about their optimal values,

We shall now determine how ~ varies with z, for a, = 2.54 and
KI = 6.10. This is easy, as ~ is of second degree in (l/x); in fact

[

-3
+

a-v a,Kl + a;S + alS2 + SP
–+:;

10

~?

CYIKJ3 (K1 — P)z + (al + S’)(K,S + alP) x
. (89)

A graph of ~ as a function of x is shown in Fig. 7.4. There is a T.erYsha]-
low minimum which occurs at

G = 314.5 (a = 800, K. = 1918, T2 = 314.5),
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At this point
~ = 0.1991 + 0.7846 = 0.9837 milz. (90)

The graph rises rapidly as z decreases past 50.
For z = z~, the (1/z) 2-term in Eq. (89) is only 0.05 per cent of ~.

It is evident that this term does not vary rapidly with al or K,; we must
therefore expect the absolute minimum of = to be close to its minimum
along the line (a, = 2.54x, K1 = 6.1OZ, Tz = z). This, in fact, is the case,
and for all practical purposes the absolute minimum can be considered to
beat the above determined point. To obtain an estimate of the variation

100

60
40

20
m
‘F 10

,; c ; ‘\

4 -
/

2 \

1
\ _

0 50 100 150 200 250 300 350
z

Pto. 74.-L’ariatio,] of e; along the line (a = 2,541, K, = G,l.r, T% = r).

of C2with a and K,,, one need only substitute a = 314.5 al for a,, and
K“ = 314.5 K, for K, in Table 7.1.

TABLE7.2.—> FORA’. = 80 six-l

I K.

1-
Optimalvalues. I 80
Experimentalvalues. I 80

{

80
80Nonoptimal values, So

80

l’,

13
16
13

13
17
9

a

33.0
29.8
49.0
22.0
33.0
33.0

;

0.486
0.593
0.477
0.495
0.629
0.382

y
C’v

0.765
0.703
0.835
0.823
0,676
0.934

.-
,’

1,251
1. Zwi

1.312

I ,318

1.305

1.316

In the actual tracking system it was found that if K, was increased
beyond the value 80 see:’, ‘one could no longer ignore the effect of the
mount power servo and the system performance rapidly deteriorated.
With this limitation in mind, the best parameter values for a and 2’,
were determined for K, = 80 see–’. Listed in Table 7“2 are the mean-
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square errors for these optimal values, for the actual experimental values
[see Eq. (6.113)], and finally for values that give a 6 per cent increase in
the mean-square error. We see from Table 7.2 that limiting K, to 80
see–’ increases the mean-square error only 25 per cent above its absolute
minimum. This results in a 12 per cent increase in the rms error, which
is quite acceptable. The experimentally determined parameter values
give a mean-square error extremely close to the restricted minimum value
and, in a sense, confirm the arguments of this chapter.

7.9. Evaluation of the Integrals.—It remains to show how the
integrals in the appendix have been evaluated. These integrals are of
the form

and the roots oj h“(z) all lic i71fheupper half plane. No greaterg(mrrality

J~ould be achieved by allo]~ing g to
contain odd poivers of z, since the con-

*
m

tribution of such terms to the integral
&
wi

would be zero. g
Z-plane

We now apply the method of resi-
dues’ to the integral in 13q. (91). In
the present application this method
requires that the value of tile integral –R R ReaI

taken along a semicircle CR of radius
R, which has its eentcr at the origin
and lies in the upper half plane (see

I
1~1,>,7.5.– P;,l I1of i!,t,xl L,t,,>,l.

Fig. 75), approach zero as R becomes
infinite. This condition is clearly satisfied, since for sufficiently large lt
the integrand is less in absolute value than 111/1<:, for some positive
constant itf. It follo~vs that

The integral about the closed path [(– R, R) + C’,] is independent of
R for sufficiently large R’s and is, in fact, equal to the sum of the residues
at the poles of the integrand contained }~-ithinthis closed path.

In the further developments, the n may be omitted as a subscri~t
where this cannot lead to confusion.

Since the roots of h (z) all lie in the upper half plane, the roots of h( – x)
lie in the lower half plane. Consequently for sufficiently large R the poles

1See E. C. Titchmarsh, The Theory o.fFunctions, Oxford, New York, 1932.
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of the integrand contained in the closed path of integration [(– R, R) + C*]

will be precisely the roots of h(x). Therefore 1 is equal to the sum of the
residues taken at the roots of h(z). It will be assumed for the moment
that these roots are all simple; it will be shown later that the stated result
holds even when some of the roots are multiple roots.

Since each residue is a rational function of a root of h(x) and since all
roots are treated alike, the integral is a symmetric rational function of
the roots of h(z). It follows that I can be expressed rationally in terms of
the coefficients oj h and g.1 It will be the purpose of this seetion to derive
such an expression.

Let x,, x2, . , , Z. be the roots of h(z), assumed distinct. Writing
1 as the sum of residues in the upper half plane, one has

n

z g(xj)
I= —

h’(zJh(-xJ’

where h’(z) is the derivative
By the factor theorem,

h(x)

k=”l

of h(z) with respect to x.

(93)

.

= aOrI (f’ – Xi). (94)
i=l

Hence

h(–~~) = 2a0(– I)nZk
n

(X!f + Xi). (S!5)
i#k

The least common multiple of the factors (~k + xi) is the product of all

sums of pairs of roots, ~ (x~ + xl). Equation (93) can now be written
1<m

as

The evaluation of Eq. (96) for n = 2 is simple enough, but a systema-
tized approach is required when n >2. The following procedure con-
sists of two parts. First an expression is obtained for the product of all
sums of pairs of roots of a polynomial in terms of its coefficients. This is

clearly necessary for the term ~ (G + z~) and will also be useful in
1<m

i,i #k

evaluating the expression ~ (z, + z!), ~~hich is the product of all pairs
j <i

1See L. E. Dickson, First course in & Tbory of Equations, W’iley, New York,
1922, Chap. 9,

\



SEC. 7.9] EVALUATIO.V OF THE I.h’TEGRALS

of roots of the polynomial

335

f,(z) .2Q = aOz”–l + (alm+a,)z”-’
X—xk

+ (ao.z~+ alzk+a,)x”-’ . + (aoz~-l+ ~ ~ . +an_l). (97)

The resulting expression is, in this case, a polynomial in x, with coefficients
that arealgebraic functions of thecoeficients of h(z). The problem will
then bereduced toevaluating symrnetri cfunctions of the form

n

z–x;
h’(xk)’

(1=–1,0,1,2,..). (98)

k=l

This will be accomplished in the second part.
Let us now obtain an expression for the product of all sums of pairs of

roots of an arbitrary polynomial,
N

Q(z) = zA,zN–i. (99)
j=(.l

Suppose Q(z) has the roots z,, Zzj . . . , z~, all dktinct. Then, given the
tWO rOOtSZk and 21,let

(loo)

It
in

will be noted that Q(a — y) and Q(a + ~), considered as polynomials
the variable y, have a common root y = (a – z~)/2, since

()ZI—Zk
a———

2 ‘Zk a+t’=)=z /
and

(101)

Q(zk) = o = (J(z,). )
Adding and subtracting the equations

Q(a – y) = O,
Q(a + y) = O, (102)

one obtains two equations in yz which have the common root (z1 — z~)/2.
The resultant’ found by eliminating Y2 from these two equations must
therefore vanish for a given by Eq. (100). On setting the resultant equal
to zero, one gets an equation of degree [N(N – I )]/2 in a. It is clear
that all sums of the type (22 + zk)/2 will satisfy this equation. Since
there are precisely [N(N – 1)]/2 such sums, all roots are of this type;
that is, there is a one-to-one correspondence between the roots of this
equatiqn and the terms (ZZ+ z~)/2 for all possible choices of 1and k. It
follows that the constant term of this equation, divided by the coefficient
of highest power in a, is precisely

1Seefor instanceL, E. Dickson, op. cit., Chap. 10.
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1
~:-~ji,i(i--Tl12 rI (2, + 2,). (103)

1<k

The actual computation of this ratio is tedious but none the less straight-
forward. The result is that for

N odd, AO AZ A4 — A,.–] O — O 1

n

N–1
O .40 .4, — A,,_, A,,_, — O -- ~-—

(z, + 2,)
— — — — —

l<k
rows

= (–. 1)1(,~-1)(~-vm ——— —- —— __ J

A]-1 [
(104)

A, .4, As — .4?J O —O
_. N–1

O .41 A3 — .4,v_, .4~ —
2

— — — rows
— — –- 1

N even,

I----E

AO AZ A4 — A.v_2 A,v O — O T

n

.40 Az — A.,-4 A~_z A,N — O ; – 1
(z, + z,)

— — — — rows
1<k

= (-1)(’’’+2”1/’ – – – – – – _ J
A ~-l ‘--

(105)

A, A3 .4, — A,v_l O 0 — O j

Al .43 — AN-S AN–I O — O ~

— ——— —— —— rows
— — — — -1

As one might expect, these determinants appear in Routh’s criterion.
As has already been mentioned, this result is used in two ways in the

evaluation of the expression in Eq. (96). In order to obtain

~ (Zm + 24,

1<m

one merely replaces Q(z) by h(z); .4, is then replaced by a,, and N is
i,)#k

replaced by n. On the other hand, in order to obtain ~ (xi + ZY), one
j <i

replaces Q(z) by the pOlynOmial~k(~) of Eq. (97); A, is replaced by

(arc; + ah-’ + “ “ - + a,),

and N by (n - 1). In the latter case it is evident that the determinants
become polynomials in x~, say A(xk), with coefficients that are rational
functions of the coefficients of h. Equation (96) therefore assumes the
form
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.
2a0

(–l)”

~ (Xm + xl)

9(@A(~k).
xkh’(~k)

(106)

1<m k=i

The product g(Zk)@k) is again a polynomial in xk. Since each term of
this polynomial can be evaluated separately, it remains only to calculate
expressions of the type

n

z–x;
h’(m)’

(1=–1,0,1,2,”””). (98)

k=l

This is the sum of all residues in the plane’ of the function z’/[h(x)].

When the degree of the numerator is at least two less than the degree of
the “denominator, the sum of the residues in the plane vanishes. It
follows that

n

z 1 1
‘=–h~’~kh’ (~k)

k=l

(107a)

.

2 d—=0~=~h’(z,)
for O~lsn–2. (lo7b)

In order to obtain the result for larger values of 1, it is convenient to write

.

z-rr—— for 1x1> maxlx~l, (108)
x’

,=0

where r, is the sum of all symmetric functions of weight r:

r. = 1, \

.

(109)

r4 = etc. I
1For a more complete development of this argument we refer the reader to

W. S. Burnside and A. W. Panton, Theor~ of Equations, 9th cd., Vol. I, Longmans,

London, 1928, pp. 171-179.
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Returning to Eq. (108), ~~emultiply through by xi-n and obtain for the
sum of the residues in the plane

.

forlzn–1. (107C)

It is possible to derive a recurrence formula for the I“s by making use
of Eq. (108) in the following way:

(24)U._ Mx) m:,
x“ x“

,=(1
.

( 1 1
a0+aI~+a2;;+”.”+ an:

)(2 )

r,—— – (110)
x’

,=0

Comparing like powers of z on both sides of Ilq. (110) gives

aOrm+ alrm_l + + amro = O. (111)

Here am = O for m > n. One can avoid the use of the r’s by succes-
sively reducing the degree of the numerator of Eq. (106) to n – 1, by
means of the formula

2-1 + ~,~~–z + + an&’—aoxj = alzk for (1 > n). (112)

Since Eq. (112) is merely the statement that h(z~) = O, this substitution
can be made at any stage of the calculation.

When the computation is carried through as outlined above, one
obtains In as a rational function of the coefficients of gin(z) and hn(z),
This expression has been shown to hold for the roots of h=(z) distinct and
in the upper half plane. Furthermore, since the coefficients of h.(z)
are continuous functions of the roots, both the computed expression for
In and its integrand are continuous functions of the roots. The expres-
sion for In equals the integral as the roots approach a multiple state; it
follows that it is equal to the integral in the limit.

It will be instructive to carry through the above process for Is. In
this case

h(z) = a0x3 + alzz + a2z + as,
}

(113)
g(z) = bDX4+ b1X2 + bz,

and the roots of h(z) are assumed to lie in the upper half plane. It follows
from Eq. (104) that

11
1 a. az

(Xm+ z,) = ~ a, ~, = aoa’ ; a1u2”

1<m

(114) I

I
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In this case Eq. (97) becomes

then, by Eq. (105),
i,j+k

II (Zi + z,) = ~ (aOZk+ al).

1 <z

Equation (106) can no\\’be written as

1——
2(aOa3 – a,a2) ,

a1b2

~ombining thcw rctiults \vith 1’11. (11 7), (me obtains

This can bc arrxmged so as to give

(115)

(116)

(117)

(118)

(119)

(120)

which checks \vith Is as gi~,cn in the appen(iix



CHAPTER 8

APPLICATIONS OF THE NEW DESIGN METHOD

BY C. H. DOWKER AND R. S. PHILLIPSI

In the preceding chapter a method was developed by which one maY
choose the best design for a servomechanism of a given type. In order
to make this choice, the type of servo must be decided upon in advance
and the statistical properties of the input signal and the noise disturb-
ances must be known. The best servomechanism performance is taken
to be that which minimizes therms error in the output.

The usefulness of this method of servo design would be greatly
enhanced if the optimal designs for general types of input signals and
noise were determined once and for all. In that case one would not have

to go through the detailed calculations for each particular application;
instead, after computing the correlation functions for the input signal and
noise, one could then look Up the specifications for the best servomecha-
nism. One would, in addition, be able to relate these results to those of
the steady-state analysis by translating the characteristics of the best
servos into the language of the decibel–log-frequent y diagram.

It is the purpose of the first part of the present chapter to make a
modest beginning on such a program. The optimal servo parameters

for two simple servomechanisms of standard type are found for a varietY
of inputs. These results are presented by means of graphs, Nyquist
diagrams, and decibel–log-frequency diagrams.

In the second part of this chapter the rms-error criterion is applied to
manual tracking of a type that has, for instance, important military
applications. The tracking apparatus plus the human operator forms a
servo system; the novel feature of such a system lies in the biomechanical
link. The best time constant for the given tracking unit is determined.

8.1. Input Signal and Noise.—We shall assume in this discussion
spectral densities of input signal and noise that depend on three param-
eters. This dependence is so flexible that many actual input spectral
densities can be approximated by a suitable choice of these parameters;
yet the dependence is simple enough to allow at least approximate solu-
tion for the best servo parameters in terms of the input parameters.

We shall assume that the input to the servo is 61 + o.., where & is

1Sections 8.1 through 8,9 by C. H. Dowker; Sees. 8.10 through 812 by R, S.
Phillips.

340
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the true input signal and ONis the noise. We shall take as our typical
servo input the one described in Sec. 6“12. For this input the velocity is
constant throughout extended intervals of time, changing abruptly at
the beginning of each interval to a new value independent of any other;
the end points of the time intervals have a Poisson distribution. The
mean length of the time intervals is denoted by I/@. If ~z is the mean-
square value of the velocity, then the spectral density of the derivative
of the input is [see Eq. (6169)]

4@
G,(j) = —

~z + p’
(1)

where o = 27rj.
The spectral density given in Eq. (1) represents at least approximately

the spectral density for many other servomechanism inputs. As long
as the power of the input derivative is concentrated at the low frequencies,
Eq. (1) is an adequate representation; d/27r can be thought of as the cutoff
frequency of the input derivative.

The spectral density of 0.,-is assumed to be of the form

G,,(f) = N, (2)

where N is a constant. In the terminology of Sec. 6.11, the noise input

is assumed to be a purely random process. Such a spectral density can
be considered to approximate a spectral density that is essentially con-
stant for all frequencies low enough to pass through the servo without
serious attenuation. In Sec. 6.10 this approximation was found to give
a satisfactory representation for radar fading in the automatic-tracking
servo system.

We shall further assume that the cross-spectral density vanishes
identically:

G,,v(~) ~ O. (3)

This will, in general, be the case whenever the sources for the input signal
and the noise are independent.

In the particular examples of servo inputs that we shall consider the

rms input speed W&z is about 50 mils/sec and 1/6 is about 10 sec (see
Sec. 6.12). Thus G,(O) = 4~2/13 = 10’ mils2/sec. In addition,

G.(f) = N = 1milz sec

as in Eq. (6.132). These comparative magnitudes will form the basis for
approximations made in the course of the following discussion.

When the cross-spectral density vanishes, the spectral density for
the error (Sec. 7.2) is given by

G,(f) = IY,(%jf) I’G,(j) + IY,(%jf) l’Gs(f), (4\

where Y1 is the transfer function for the input-signal derivative and Y,
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is the transfer function for the noise input. The mean-square error can
then be found as in Chap. 7 from the expression

/

.
~= df G,(f).

o
(5)

SERVO WITH PROPORTIONAL CONTROL

8.2. Best Control Parameter.—We begin with the simplest and best-
known type of servomechanism—a servo with proportional control.
This type of servo is of considerable interest in itself; it is, in addition,
suitable for exhibiting the complete analysis of a simple problem. The
minimum mean-square error for the proportional-control servo will also
furnish a standard with which to compare the performance of more
complicated types of servomechanisms.

It will be convenient in what follows to omit the symbol C( ),
denoting the Laplace transform of the function lvithin the parentheses.
The reader should have no difficulty in differentiating bet\\’eenthe func-
tion of time and its I,aplace transform by the context.

The output 00 of the servo with proportional control is related to the
input by the equation [see Eq. (4.5)]

(Tmp + l)pflo = K.(8, + 0., – 00), (6)

where K. is the velocity-error constant and T~ is the motor time constant.
Here Ko is a true parameter, variable o~’er a wide range, whereas T~ can
be changed only by replacing the motor or changing the load inertia.

We shall show that if the motor time constant T~ is too large for the
particular servo application, the minimum mean-square error depends
strongly on T~. If Tn is less than a certain critical value, the minimum
mean-square error and the optimal value of K, are practically inde-
pendent of !/’~. If T~ has this critical value, the peak amplifications are
larger for the optimal servos than might be expected on the basis of the
steady-state analysis of chap. 4; but if l’~ is ~vellbelow this critical value,
the usual peak amplifications arc obtained. The decisive factor in the
design of the proportional-control servo is the noise-to-signal ratio
N/~. }Vhcn this ratio is small, the minimllm mean-square error is
proportional to (~N’) “Iand the optirntil K. is pruportiomd to (~/N) ~~.

Ilquation (6) of the serl’o can be solved for k as follo~~s:

eO=e, –
T.p + 1 Km

— ON. (7)–.- peI + ~w + (T-P + 11P
Ko + (’/’~p + l)p

Thus 00 differs from O,by an error c consisting of two parts—the error due
to the failure of the servo to follo!v the input signal and the error resulting
from the noise. Since the spectral density of pfl, is 4P%/(u’ + p’), the
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mean-square error in follo\ving the input is
.

7
/

1 ‘du _ T;ti’ + 1 -lp;~
c,=% “

~K, +jkl – 7’WU1]202+&”
(8)

onintrgratingt hisc,xprcssi,~nll ytl~( methodof Sec. 7.6 and simplifying
the result, one obtains

(9)

Similarly, since G,,(j) = i~j the mean-s(luarc error resulting from the
noise is

(10)

which, when integrated, becomes

Y NK.C:v=
“4 “

(11)

The mean-square error in following is then

.Lt this point it is convrnicnt to make certain approximations which
will normally be justified. The number O, that is, the cutoff frequency
of the input. signal, is usually small; for instance, ~–l is betv-cen 10 and
30 sec in the input, discussed in Sec. 612. ‘he motor time constant
T~ is usually bct~~-een0.5 and 0,05 sec. Hence ~T,. is likely to be small
compared with unity, If also @/h-, is small compared with 1, we may
approximate to ~z by the formula

(13)

The computations ~~+illbe simplified if we substitute for Ku in terms of
the dimensionless parameter

()

KNbh
~=y= .

az
(14)

The form of the mean-square error that we obtain is

‘= @4+,+G)%+o
(15)

We are now in a position to find the best value of K,—the value of K.

and hence y that minimizes the mean-square error. To this end, we
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differentia~e ~ with respect to y and equate the result to zero:

(17)

Substituting the optimal value Of y into 13q. (15), we find the minimum

mean-sauare error

(18)

For each value of v > 1’ Eqs. (17), (18), and (14) give respectively a
value of T~ and, corresponding to this T~, the minimum ~z and the opti-
mal value of K.. Figure 8.1 shows how the minimum ~ and the optimal

2.0 r

1.5
A

/ k’

1.0
& ,/’”/ ‘.

‘y.

.,1” I
0.5

,/’
/

,/”
o~

o 0.5 1.0 1.5 2.0

‘m(%)+
FIG. 8.1.—Best velocitl--error constant and mean-square error of servo with propor-

tional control as a function of motor time constant. Curve A, y = (K./2) (,V/~Z)M;

Curve B, ~/(~Nz)’A.

Kv vary with T*. One sees that for large Tn, ~ is proportional to T~.

On the other hand, if T~ is small, ~ is largely independent of T-; the
best value of K“ is then approximately 2 [(~’/N)~].

If—-

()
;2 M

K.=2R ,

then y = 1 and, by 13q. (15),

;2

()

-3 -

(~N2)$5
_:+; f$>5T~.

I ~ z 1 corresponds to the real range Of T.,.

(19)

(20)
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Consequently, if

()

N%
Tm<0,4= ,~2/33 (21)

then ~z is less than 11 per cent above its absolute minimum value, which
is approached as 1“~ ~ O. If we now separate the error in fol!owing the
signal from the error due to noise, we see that

As T~ -O, the mean-square error in following the signal becomes half of
the mean-square error due to noise. For Tm <0.4 (N/~2@s)~~, the com-
ponent mean-square errors are related by

0.503 < ~ <0.663. . (23)

These computations and the approximation [Eq. (13)] on which they
are based are valid only if for Kz near its optimal value, @/K. is small com-
pared with unity. But ~ is normally very large compared with N,
and thus K. = 2(~/N)~5 is large. In the example below [Eq. (33fJ)]
K, > 30 see–’. Hence, since ~ is usually small compared with 1 see–’,
B/KV is likely to be very small.

8s3. Properties of the Best Servo with Proportional Control.-Let us
now examine the properties of a servo with proportional cent rol, when

the best choice is made of the parameter K,,

From Eq. (6) one sees that

K.

‘0 = (T~p + l)p 6’

where ~ = 8J + 8,V— 80 is the error signal (not
lowing the intended input). Hence

00 = K,—
e (T~ju + l)ju “

Thus we have the limiting relations

e. Ku 1— = —, u << —J
c u T.

00 K. 1— .—
e T~u2’ u >> —.

T.

the error O,

(24)

00 in fol-

(25)

(26a)

(26b)

If T~ is small enough, that is, if T~ <0.4 [N/(~2P3)]~~, then, by Fig.

S.1, K, can be chosen equal to 2(~’/N)~ independently of T~. For
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small values of w the loop gain Ivill then he equal to

(27)

Thus two decibel–log-frequency dizgrarns, for different small values of
T~, will have the same asymptote at IOJVfrequencies (Fig. 8.2).

If thr fcxxfback cutoff frequency (the frcqurncy f. at ~}-hich the loop
gain is unity) is much greater than 1 ‘(27r7’n,), JVChave

K. = l’mu:,

.f =; O=+($)”] (~>> +)

(28a)

(28b)

It follolvs from Eq. (6), wit,h neglect of (?~relative to 8,, that the over-

+40

+30

* ’20
.s

‘;+1O
g
CJ

o

– 10

-20

(34

FIG. 82.-Decibel-log-frequency diagram
for servo with proportional control.

:dl simplifications of the servo is

The peak over-all amplification is
approximately the amplification at
the cutoff frequmcy if KwTm is suf-
ficiently l:~rge; for instance, if KOTm

> 2.5, then J 5 per cent error is
made by the approximation

If the approximations of the three
preceding paragraphs are all valid,
the cutoff frequency is, by Eqs. (19),

(21), and (28),

Similarly, the peak amplification is

(31)

(32)

It should be noted that although ~/N@3 is usually a very large number,
its twelfth root is not large.

In the case of the radar automatic-tracking example in Sees, 6.10 and
6.12 we have ;2 = 2620 milsZ/sec2, N = 0.636 milz sec., ~ = 0.1 See–l.
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.If

()
>g

T. <0.4 –X = 0.316 sec
a2f13

and

();2 $’J

Kv=2N = 32.1 SeC–l,

then, by Eq. (20),

~ < 0.83(~2N2)~ = 8.46 mil 2,

~ <2.91 mil. }

The cutoff frequency is

()

>~

j. >0.356 q = 1.60 Cps,

and the peak amplification is

(33a)

(33L5)

(33C)

(33d)

(33e)

It maybe pointed out that in practice, T~ is frequently chosen smaller
than is required by Eq. (21). This gives a smaller error and a smaller
peak amplification. If in the previous example we choose

Tm ==0.1 see, (34)

we find that

V’= = 2.75 roils,
f. = 2.85 Cps,

IPI!9 1
(35)

e, ~ax
= 1,79.

8.4. Servo with Proportional Control, T~ = O.—We have thus far
been using the approximate formula of Eq. (13) for ~. If T-is negligible,
however, a better approximation to Eq. (12) is

(36)

Assuming !!’~ to be negligible, ~re shall now study the effect of noise on
the pw-formance of the servomechanism. The relative magnitude of
the noise can be expressed in terms of the noise-to-signal ratio N/~.
This ratio (in sec3) is usually a very small number, and its dimensionless
product by ~3 is a still smaller number. Hence it is convenient to intro-
duce instead of the noise-to-signal ratio, the number [~f. Eq. (32)]

(37)
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Equation (36) then becomes

~ 1
- = 2~(2-g + T’)(a’N’)~

+ ;“

Now if K, and hence y are chosen so as to minimize ~, then

p
2~—

4Y + T4

dy (~N2)% = – y’(2y + r’)’
+1=0.

Therefore, for optimal performance

Y’(Y + +-4)2

Solving for y and substituting back

F1~, 8.3.—Best K. and ~ of servo with
proportional control and small motor time
constant, plotted against noise-to-signal

parameter r, Curve A, (K./2) (N/ay)%;
Curve B, ~/[(a~N~) %].

=Y +*4.

[SEC. 8.5

(38)

(39)

(40)

in Eqs. (14) and (38), one obtains
the best K, and its corresponding

~for each value of r.
If r is small, we can solve Eq.

(40) as a power series in r,

y=l–~~4+~@

— *?-16 +.... (41)

Substituting back in 13q. (38), we
get

~ = ~(~Nl)~(l — &-4 + +@m
— &~Is+ “ . ). (42)

The optimal (K,/2) (N/~) ~ and
T—c~/[(a2N2)~] are plotted against r
in Fig. 8“3. It is seen that for

small values of r, C3is proportional to (~Nz) ~ and the optimal K. is pro-

portional to (~2/N)~. e,

TACHOMETER FEEDBACK t eo
CONTROL Tachometer

8.6. Mean-square Error of ~, , t
Out p u t.—By adding a tachom-

eter-feedback loop (see Fig. 8.4)

to the servo with proportional con-

trol, one can reduce still further

the dependence of the mean- FIG. S4.-Servo with tachometer-feedback

square error on the motor time
loc>p.

constant T~. One thereby makes possible an increase in Km and a con-
sequent decrease in the error for a constant-velocity input.

The equation of the servo with tachometer-feedback loop is

(T.p + l)pL90 = K.(o, + 0. – %) – A T ~$ ~ pf?o. (43)
a
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There are now three servo parameters—the velocity +wror constant Km,
the tachometer-loop gain A, and the tachometer-filter time constant
Ta—in addition to the limited parameter Tn.

Solving Eq. (43) for 8. gives

eo=ol–
(Tap + l)(T~p + 1) + Al”.p

K.(Tap + 1) + (Tap + l)(~np + l)P + AZ’.p2 ‘o’
Kti(Tap + 1)

+ IG(T.P + 1) + (T.P + l)(T.p + l)P + A1’.p’ ‘N”
(44)

Since the spectral density of pd, is (41@)/(u2 + ~’) [see Eq. (l)], the mean-
square error in following the input is

which on integration becomes

;2

? = ~ [(KT. + 1)(T. + T. + AT.) – K,TCTJ1

x [K. + (KvTa + 1)13 + (T. + Tin + ATJi32 + T. Z’.B3]-1

x {(KuTa + 1)(TC + T. + AT.) – KvT.Tm + (T. + T. + AT.)*B
+ (T. + T. + ATJTaZ’m@2 + KJ(Ta + T. + AT.)’ – 2T.3TJ

x [(TC + T. + ATJ13 + TaTm@2]

+ K. TgT’’[K.d + (K.T. + 1)/32]].(46)

The spectral density of the noise is G~(f) = N [see Eq. (2)]; the mean-
square error due to noise is therefore

?_ !1-
‘“’–z 0

du

K;(I + T~ti’)

IK. + (K.Ta + l)ju – (T. + Trn + ATJu2 – TaT~ju312 “ ’47)

which, when integrated and simplified, becomes

The mean-square error of the output is, of course,

z=~+q. (49)

8.6. Ideal Case of Intinite Gain.—We shall see that if the tachometer-
luop gain A is large enough, a servo with tachometer feedback can be
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made to have a smaller mean-square error than a proportional-control
servo even if the former has a’large T~ and the latter a small Tn.

With this end in view, let us take the limiting case where K. = CA

and A -+ m. In this limit, Eqs. (46) and (48) become

and

and hence

(50)

(51)

(52)

It will be noted that in this limiting case ~ is independent of T~.

We now choose the parameters C and T. so’ as to minimize ~. Then

aP -2

8T. = (C + GTt@B+ T,#2)2 – 4!: = 0“
—. (54)

Equations (53) and (54) may be solved for C and T. as follows. Elimi-
nation of ~z between Eqs. (53) and (54) yields

C -I- CTafl + Tab’ =
(C2 + (3’)T=

2’

Substitution of this expression into F.q. (54) now gives

or

where r is the parameter defined in Rq, (37). Solution for C yields
—.

c = D 44r-’ – 1.

Equation (55) can now be solved for T.,

The above procedure is valid only if it I(wIs to

(55)

(56)

(57)

I
(58)

(59)

(60)

real positive finite
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values of the parameters. In particular, ~is a minimum for finite Ta
only if the denominator in Eq. (60) is positive, that is, only if

r < (2 – <z)~f = 0.915. (61 )

If r satisfies this condition, both C and Z’. \villbe real and positive.
Now, having found the optimal values of C and T. in terms of the

parameter r, we can substitute back in Eq. (52) to get the minimum value
of ~. Combining Eqs. (52) and (54), we obtain

()Z=:& (c+cTaP+T.D’)+x14 E+c

—— ~& (2C + 2CTad + T.@’ – CT.D + C2TJ, (62)
a

~~hich, together with Eq. (55), gives

-T=
%7 & (C’Ta – CTa~ + C’T.J = : (2C – /9). (63)

.

If we now express C in terms of T, using Eq. (58), we get

From the definition of r it follows that

(64)

(65)

Our final expression for ~ is then

As we have already remarked, ~ and hence ~ are independent of l’~
when there is high-gain tachometer feedback in addition to proportional
control. In the case of a servo with proportional control only, the
minimum mean-square error is dependent on Tm; its smallest value,
when Tm ~ O, is given by Eq. (42). The ratio of the minimum mean-
square error of a servo with tachometer loop and arbitrary Tm (but
infinite A and Ku) to the minimum mean-square error of a servo with
proportional control and negligible T- is

Tcmwith tachometer 4 <~ - +,3——
~rl–~r4+Z~r8–&&+ . . . +

. (67)
~ without tachometer

This ratio is shown plotted against r in Fig. 8.5. It is seen that for all
reasonable values of r the tachometer-feedback servo performs better
than the proportional-control servo even if in the latter case T~ = O,
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1,0
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0
0 0.2 0.4 0.6 0.8 1.0

r

FIG. 8 5.—Ratio of nlinimum mean-square errors of servos with tachometer looP
to minimum mean-square error of servo without tachometer looP plotted against

r = (N/3z/~z)XZ.

8.7. Best Control Parameters for Finite Amplifications. -In actual
practice, A and Kv cannot be made arbitrarily large; the preceding treat-
ment is therefore an analysis of a somewhat idealized situation. We
shall now modify this analysis and seek an approximation to the optimal
values of the parameters KU and Ta for the case of a finite A.

We first make some approximations to Eqs. (46) and (48). We
assume that Km is large compared with each of the following: I/T=,
l/Tin, TJT;, 8, P2Tm, 6A. The last assumption is justified because (1)
if A is large and ~is less than ~, then by Eq. (58), K./~A = 2/7’, which is
large i“elative to unity, whereas (2) if A is small it is obvious that K, >>13A.
Using these approximations, Eqs. (46) and (48) become

)
We now make the further assumption that L?is so small that L?T~-4<1

and flT* << 1. (In the examples below’, these relations and approxima-
tions are valid; if o is not small, the formulas below must be used with
caution. ) The formula for the mean-square error then becomes
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Given A and l’~, we now choose K. and T. so as to minimize ~. Then

N
+ 4(1 + A) = 0’ ‘70a)

a? a&4(2 + z’i) _ NA

r3Ta = K; 4(1 + A)T~ = 0“
(70b)

We solve Eqs. (70) for K. and T= as follows. Solution of Eq. (70~) for
K: gives

K: = ~&P4(l + A)(2+A)T~. (71)

Elimination of;’ by means of Eq. (37) yields KVin terms of T.,

K = 2 <(1 +A)(2+A)&Ta
“ ~6 (72)

Also, substitution of Eq. (706) into Eq. (70a) gives

1 + 3BAT. + iIA(2 + A)Ta + ~~ = :Ko6(2 + A) T:. (73)

If we no~v make use of Eq. (72), we obtain

On substitution for T~ of the dimensionless parameter z, defined by

~z = 1 fi2T:

A<2+A<1+A ~6’
(75)

this becomes

1 + 3@ATm + @A(2 + A)T.(1 + ~’) = ‘2 + ‘)$* ~P3T~. (76)

In order to simplify this equation we introduce another parameter,

[ 1
(1 + A)(2 + A) ‘i @TO

x= A, T’(1 + zz))~; (77)

eliminating To, we obtain

[ 1
AC(2 + A)’ ‘ir3(l + z’)$$z

1 + 3@ATm +
l+A

[ 1
A’(2 + A)’ ‘4~3(1+ z’)%’,.

l+A
(78a)
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which may also be written as

[

l+A

1
)4 1

(78b)X’ – Z = (1 + 3!3A!fm) A,(Z + A), 73(1+ #)?,’

This equation can now be solved for z. Finally, solving
(77) for K, and Z’. in terms of z, we have

~ = 2D[A2(1 + A)(2 + A)]}~(l + 22)EX
“ r’

,

[

A,

1
‘6?J(l + 22)%

‘“ = (1 +.4)(2 +A) B“

llqs. (72) and

(79)

(80)

Equations (78 b), (79), and (80) give us the optimal values of Kmand z’.
for each set of values of A, Tmj and the input parameters,

We now may substitute into Eq. (69) to find the minimum value of
~. First, use of Eq. (70b) gives

Use of Eq. (73) then gives

But, by Eq. (72),

K.T~ T: 2(1 + A)~4(2 + A)~*02

2A(1+A)(2+A)T: = 2A(1+A)(2+A) ~6 , (82)

and hence, by Eq. (75),
K. T;

2A(1 + A)(2 + .4)T. = ‘z” (83)

Therefore

~=
[

N3
m 1

-K. ++(1+ z’).
4(1+A) 2 .

Substituting for K. and Z’afrom Eqs. (79) and (80), we have

Finally, by Eq. (65),
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In Fig. 8.6, ~ is plotted against A/(10 + A) for T~ = z = O and for
three different values of r: r = 0.215, 0.368, and 0.585, or r’ = 0.01,
0.05, and 0.20. It can be seen that for this range of values of r, if

A>:, (86)

then the mean-square error is less than 5 per cent above its limiting value
when A * m .
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FIG, 8.6. FIG. 87.
FIG. S.6.—Minimum mean-square error of servo with tacbomcter-feedback looP as a

function of tachometer-loop gaiu A, when T~ = O.
FIG. S7.-Minimum mean-square error of servo with tachometer-feedback loop

as a function of tachometer-loop gain A, when r3 = 0.05. Numbers on curves are values

of Tna(~(32/N) 8.

Figure 87 shows how the minimum C2depends on Tfi. The curves
are plotted for four different values of Z’- when rs = 0.05, that is, when
r = 0,M8. The dependence on 1“~ becomes important only for values
of A less than 2.

Example.—We return to the example of Sec. 8.3 and assume that

;2 = zGzo mil~ SCC–2,

N = 0.636 milz sec.

p = 0.1 I (87)
see–l,

Tm = 0.316 sec.
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Then

1
r = 0.281,
1
F = 12”7”

Taking A > l/r’ [see Eq. (86)], we choose

A = 14.

Then we find that
Z2 = 0.009,
r = 1.187,

K* = 158 see-l,
Ta = 0.252 See,
~~ = 3.11 milsz,

fin = 1.76 roils.

[SEC. 8.8

(88)

(89)

(90)

Thus the rms error for the tachometer-feedback-loop servo is 35 per cent
less than the rms error for the proportional-control servo. It will be
seen from Fig. 8.7 that the choice of T~ = 0.316 sec has increased the
mean-square error only negligibly above the minimum given by T- = O.

8.8. Decibel-log-frequency Diagram.—We now examine the form
taken by the decibel–log-frequency curve for the servo with tachometer-
feedbark loop, when the best choice is made of the parameters.

From Eq. (43) we see that

O* =
K“

(91)
(Tmp+l)p+AT;~ip6”

o

Thk may also be written as

A Taju

00 _ K.(T~ju + 1) (T~ju + l)(!l’.jw + 1) .— —
E – .4 ‘rOwz A Tajw (92)

1 + ~T.ju + l)(T~_)

Now

AT&

(T”ju + l)(Z’@ + 1) = ‘Tti””
if o is small,

A

1

@3)

= T.j~’
if u is large.

Therefore, if A is large, A T=jW/[(TJti + 1) (Taji + 1)] is the dominant

term in the denominator of Eq. (92) provided that l/AT. < ~ < A/T~.

Thus, if A is large,
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(94a)

(94b)

(94C)

(94d)

decibel–log-fre-
quency diagram-meet at a point where w = 1~-7’=and It70/cI = (KuT~) /A.
This completes the general characterization to the transfer locus, it being
assumed ordy that A is large. We have now to consider the effect of
the best choice of constants, according to the theory developed above.

If A is sufficiently large, it follows from Eq. (75) that z = O and from
Eq. (78b) that z = 1. By Eqs.
~9) and (80), the best choice of
constants makes

KVTO
— = 2(1 + Z’)x’ = 2. (95)

A

Thus one should have I&/cl = 2
where the central segments of the
decibel–log-frequency diagram in-
tersect; in other words, the ve-
locity-error constant Ku should be
so chosen that the intersection of
the segments of the decibel-log-
frequency diagram at u = 1/Ta

will be about 6 db above feedback
cutoff. The loop gain 100/cl be-

+60

+50

% +40
~
. +30
.—

‘ii

-10

-20

w
lclG, 88.-Dccibcl-log-f rcquel,cl, dia-

gram for servo with tachometer-feedbuck
loop,

comes zero db in the 6-db-per-octave segment, 6 db from the almvc-
mentioned intersection; by Eq. (94c) this occurs for

(96)

(97)

The theory, as illustrated by Fig. 8.7, has shown that the exact value of A
does not much matter if it is only great enough. Change in A \vill not
materially change the central part of the decibel–log-frequency diagram
but only the length of the central srgments; all that is required is that
these shall be sufficiently long. [From the steacfy-state point of view
it is clear that the hmgth of the ( 1,/T,,, ,4/ 7’,,,)-s(Jgmunt contruls the
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stability of the servo.] The best filter time constant 2’. is determined by
Eq. (80) or, if .4 is large enough, by

(98)

This theoretically derived decibel–log-frequency diagram is similar
to that commonly believed desirable, except that the velocity-error
constant is smaller than might have been expected; usually K“ is assumed
to be so chosen that O db is at or below the middle of the 6-db-per-octave
middle segment. In practice, however, the amplifier gain is frequently
turned down considerably below that assumed in the steady-state design
of the servo. Thus we can claim substantial agreement with the usual
design practice, if not with its theory.

The approximate peak amplification is found as follows: If A is

sufficiently large and if
1

AT.
<u<;) (99)

.
then by Eq. (92)

_ ~ ICJT& + 1)0.
e – A Tau2

(loo)

and
e.

This approximation is rough unless A is very large; otherwise it tends to
underestimate the magnitude of 00/61. However, if we so approximate
60/’61, the square of the amplification is

To simplify the computation we substitute the dimensionless parameters

~=!y

/
(103)

~ = T~@~J

and obtain
00 t 1+X

K = !72 ~z – 2qx + q’ + q%’
(104)

The peak amplification occurs for the value of z at which 180/0,]2 is
maximum—the value of z for which

(105)

4
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is a minimum. This value of z is determined by

-(d Z’ – 2qz

dx )1 + z + ‘2 = ‘1=2*IW=29’) = 0 ‘106”)
or

x2+2x —2y=o; (106b)
solving this, we obtain

Z=–l+dmq (107a)
or

1

(d

K T.

“ = F: )
1+2*–1. (107b)

Substituting Eq. (107a) back into Eq, (104), we find that the peak
amplification is

d
!& . __ q’ /1 + Zq
01-. 2+4q+(q’ –2q–2)<l+2q”

(108)

In Fig. 8.9 the peak amplification is show+nplotted against q. This graph
is to be used with caution, since, as mentioned above, for reasonable
values of A the peak amplification is underestimated. If A is very large,

q = 2 [see Eq. (95)]; the peak
2.0amplification is then

60
z ma.

= 1.27. (109) ,

8.9. Nyquist Diagram.—The
g. 1.5

form of the Nyquist diagram of
the servo with tachometer-feed-
back loop can be inferred from the 1,00
form of the decibel–log-frequency 1 2 3

diagram. However, since the
~=y

Nyquist diagram is much used in Fm. 89,-Pernk amplificationof servo
withtachometer-feedbackloop whentachom.

servo design, it may be worth eter-loopgainis large.
while to give an example of a
Nyquist diagram of a servo designed in accordance with the rms-error
criterion.

Let us assume the same input signal as in the example of Sec. 8.3 or
6.12 and assume that the noise arises only from a potentiometer wound
with ~ turn per mil (see Sec. 6.13). The spectral density of the noise is
then fairly flat out to 3 cps; we assume that it can be fairly represented
by GN(.f) = 0.05 roil’ see [see Eq. (6182)]. We choose then

~ = ‘fj’” mils2/sec2,
N = 0.05 milz see,

)

(110)
~ = 0.1 see–l,
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and hence
r = 0.227. (111)

If A were zero, we should wish to take 7’~ < 0.4r_’ [Eq. (21)]—in thh
case T~ <0.207. Since A is not to be taken as zero, we choose

T~ = 0.3 sec. (112)
Now

1
– = 19.4,~2 (113)

and we wish to choose A enough larger than this to allow for the effect

-2 -1 0 of the larger T*. We therefore
o take

A = 25. (114)

/ Then

y
- -J 22 = 0.009,

z = 1.162,

y
q = 2.72,

Km = 511 see–l, (115)
/ _2j T. = 0.133 see,

~,~. &10.-Nyquist diagramof servo d~ = ().68 roil,withtachometer-feedbackloop. Thecircle
is drawnfor [Oo/6’~1= 1.28. j. = 3.13 Cps.

The Nyquist diagram for this servo is shown in Fig. 8.10. The circle
in Fig. 8.10 is the plot of 160/0~]= 1.28. The peak amplification is nearly
1.28, which is larger than the value 1.22 that can be read from the approxi-
mate curve of Fig. 8.9. It is noteworthy that doubling the velocity-
error constant and thus magnifying this Nyquist plot in the ratio 2/1
will cut down the peak amplification and thus improve stability.

Thus we see again (cf. Sec. 88) that the rme-error criterion calls for a
lower gain than a naive, examination of the Nyquist diagram would indi-
cate. In actual practice a servo to be used in the presence of potentiom-
eter noise is designed with the help of a Nyquist diagram, and the gain is
thereafter arbitrarily reduced. Our theory is thus in accord with existing
practice.

MANUAL TRACKING

8.10. Introduction.-In manual tracking the human operator can be
considered as part of a servo loop, in which he performs the functions of a
power element and a servomotoi (Fig. 8.11). The operator observes
the misalignment between the telescope and the target and turns a hand-
wheel in the direction that tends to reduce this misalignment, The
handwheel drives the tracking unit, which, in turn, positions the telescope,
thus closing the feedback loop.
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In the simplest type of manual-tracking system the human operator
is the only power source in the closed loop. In more complex systems,
where torque amplification requires the use of a driving motor, the
human operator is a secondary servomotor. Limitations on the speed
and torque available apply to both the power motor and the human
operator; in addition, the performance of the human operator is governed
by conditions of fatigue and mental and physical comfort. It is charac-
teristic of the human operator that there is a time lag between the instant
when an error is observed and the instant when corrective action on the
part of “the operator M started,

Scwe
Target
mot!on

@“

. E Operator
.@ Tr~nJng

@f Handwheel
displacement

I

%
00

Fm. S.11.—Manual-tracking loop.

As in any servo system, in order to obtain good performance the loop
must have high gain and stability. The equalization is achieved by the
judicious choice of the available parameters: the handwheel ratio, the
optical magnification, and the tracking time constants. The present
chapter includes a theoretical discussion of a tracking system based on
the assumption that the human operator behaves like a linear mechanism.
The rms-error criterion is applied to obtain the best tracking time con-
stant. The theoretical results compare favorably with those found by
experiment. The entire discussion is limited to an aided-tracking
system with a handwheel input.

8.11. The Aided-tracking Unit. -Aided tracking is a combination of
dkplacement and rate tracking. In pure displacement tracking the
operator has a direct connection, either mechanically or electrically,
with the controlled member. In tracking a target moving at constant
angular rate, the operator must turn his handwheel at a constant rate.
If he is lagging the target, he will turn faster until the error is corrected;
if he is leading the target, he will turn more slowly.

In pure rate tracking it is the speed of the output that is determined by
the position of the input handwheel; in tracking a target moving at a
constant rate the handwheel need not be turned after the proper adjust-
ment has been made.

When these two types of tracking are combined, an error in rate and
the resulting dkplacement error are corrected simultaneously; a change
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in the handwheel position changes the rate of motion of the output at
the same time that the displacement error is corrected. This is aided
tracking.

A basic design for the aided-tracking unit is shown in Fig. 8.12. The
output of the differential 90 is a linear combination of the handwheel
dkplacement o and the displacement of the variable-speed-drive output
0;

00 = K14 + KZ’J, (116)

where K1 and Kt are gear ratios. The speed of the variable-speed drive
is proportional to the handwheel displacement;

() = K, Q’. (117)

The two foregoing equations combine to give the equation of the aided-
tracking unit;

(118)

(119)

is the aided-tracking time constant. The aided-tracking time consfant
has the following physical interpretation: If a given change in the position
of the handwheel results in changes in position and velocity of the output
by Ad. and AO~,respectively, then

(120)

In the aided-tracking unit shown in Fig. 8.12, the operator’s hand-

u
FIG. S.12.—Basic mechanical design of an

aided-tracking unit.

wheel is connected through gear-
ing directly to the load, as well as
to the movable member of the
variable-speed drive. Such an ar-
rangement is satisfactory only
when the speed and torque re-
quirements at the load can be met
without the application of high
torques at the handwheel and it is
mechanically convenient to gear
directly from the handwheel input
to the load. Frequently, how-

ever, the operator’s position is remote from the load to be controlled, or the
output torque required is high; in either case, some form of electrical
power drive must be used. A tracking unit suitable for this purpose is
shown in Fig. 8013.
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There are several common types of manual-tracking controls, (1)
a handwheel, (2) a handle bar or some modification of a handle bar, (3)
a joy stick, The choice of input control depends largely on the type of
tracking to be performed, that is, whether it is tracking in one or two
coordkates and whether the tracking is done by one or more operators.
The choice depends also on whether the operator is in motion or is station-
ary, on whether he can use one or both hands for tracking, and on the
space available for the operator and the tracking controls

jPjentiornetj ~

Speed
Wferential

*
control /

Load

Position——*
control

Synchro

FIG. 8.1:3 .—llcmote-?ontrol aided-tracking unit.

If the operator is seated at a console and tracks in only one coordinate,
the hand~vheel type of input seems to be preferred. The relationship
between handwheel speed and output should be such that the operator is
not required to turn much more slowly than 10 rpm nor much faster than

200 rpm. The handwheel should have sufficient inertia and be large

enough to permit smoothness in turning but shoukf be as free of frictional

drag as possible to prevent tiring of the operator by long periods of
tracking,

The time required for an error in tracking to become perceptible, if
the tracking is done through a telescope, can be reduced by increasing
the magnifying power of the telescope. The optical magnification that
can be used is limited, however, by the size of field. If the field of view
is too small, it is very difficult to get on target; in addition, the apparent
velocity of the target in the field of view is so great as to make tracking
arduous.

8.12. Application of the Rms-error Criterion in Determining the Best
Aided-tracking Time Constant.—It will be the purpose of the present
sectionl to give a quantitative treatment of the aided-tracking system
with handwheel control. We shall determine the values of the aided-
tracking time constant for which the system is stable, as well as the best
value in the rms sense.

For the purpose of this investigation it is assumed that the human
operator behaves like a linear mechanism. More precisely, it is thought
reasonable (on the basis of admittedly crude experiments) to assume that

1 Section 812 is a revision of a paper by R. S, Phillips entitled “Aided Tracking,
Part II, ” which was published as RL Report No. 453, Nov, 3, 1943.
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at all times the operator turns the handwheel at a rate proportional to the
magnitude of the tracking error. It is well known that there is a time lag
between the stimulus and the operator’s reaction. In fact, it seems to
be reasonable to assume that at any time t he turns the handwheel at a

2.0

1.8

1.6

1.4

1.2
~
E
g 1.0
~

50.8

0.6

0.4

0.2

0

/
/

“-’Y(%“’y”I

It
l~T!me delay eLp

f

1’
/

1 2 3
t/L —

Fm. 8. 14.—Delayed response to a unit-step
function tiinput.

rate proportional to the tracking
error which existed at the time
(t – L), where L is the magni-
tude of the time lag. The rate of
turning can then be expressed as
~’(t) = v,e(t – L). .4 reasonable
value for the time delay L was
found to be 0.5 sec.

An experienced operator might
also anticipate the error by taking
into account the rate of change of
error. This would add a deriva-
tive term to the above equation,
which then becomes

d’(t) = v,e(t – L)

+ ,,,’(t – L), (121)

where vI is the proportional-con-
trol constant in (see)–l and VZis
the derivative-control c o ns t a n t
(dimensionless). The equivalent
expression for 1#1’(t)in the Laplace-
transform terminology is

(122)

For mathematical convenience, the term e’p has been replaced by
the expression [(Lp/3) + 1]3. An idea of the goodness of this approxi-
mation can be gained from Fig. 814, where there is plotted the response of
an operator with VZ= O to a unit-step function e-input, for the two
conditions of time lag eL2 and [(.LP/3) + 113. The full curve gives the
response for a reaction lag of the form [(Lp/3 + IIa; this is

[ 01

2

y(t) = ; – 1 + e-a~/L 1+2;+; ; . (123)

The dashed curve illustrates the type of response to be expected on the
assumption that the operator does nothing until a time L after his stimu-
lus and then turns at a rate proportional to the error.

I See Chap. 2 of this volume.
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the aided-tracking unit [Eq. (118)] can be rewritten

()p%=K, p+~~. (124)
a

to Eq. (122) that we shall use is

()Lp
~ + 1 3pl#l = (., + V,p)c. (125)

Combining Eqs. (124) and (125) then gives

R+1)3P””=[“P2+(V+4P+21’
(126)

Here we have replaced K1 VIby v, and K,vz by w This does not restrict
the generality in any way, since \ve can only obtain conditions on the
ratio v1/vz by a linear type of theory. Finally, making use of the rela-
tion 00 = OJ– c, we obtain an equation relfiting the error and the input,

[f++ Y“+‘2P2+(P+ap++l’=(?+’)’p” ‘127)
The above chain of physical considcmtions has thus brought us to

the aided-tracking equation. There remains the problem of determining

the best value of the tracking constant, i“. and the operator parameters
(PI,Y2). In order to accomplish this, the rms (rror ]vill first be computed
and then minimized; this proccdurc follm~s the method developed in
Chap. 7.

The input O,to be assumed is onc of const:mt velocity over a sequence
of intervals, with abrupt changes in velocity at the cnd of each interval.
These changes are all ind~pcndeut, because in aided tracking it is the

change in velocity, and not the angukw positions, that is significant.
Let x(t) be a unit-ramp function,

z(t) = 0, (t ~ 0), I (128)r(t) = (, (t > 0),

and let the a. be mdcpendcnt r:m(lom vari:ll)lcs Irith zero means. Then
O, is defined as

e, =
z

a,,,r(l — f,,), (129)
r,

where the t. are distributed in some random fashion with density C. A
sample of Ofis shown in Fig. 8.15. This type of input was chosen because
it represents, at least roughly, the typical input in an aided-tracking
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system, in which the operator corrects mainly for changes in the angular
velocity of the target.

Although Oris not a stationary random process, its second, derivative
is a sequence of independent delta functions of the type described in

I
‘%

I

I

t. tn+l tn+ztn+3
Time —

Fm 8.16.—Graph of L%.

Sec. 6.11. The spectral density of
the second derivative has the value
N for all frequencies, where

N = ~2u. (130)

Since the transfer function contains
a factor of pz, no difficulty results
from working with the improper
spectral density

N
IW) = ~“ (131)

The mean-square error obtained
by using the above input is precisely

the same as the integrated-square error for an input W2 x (t). Hence
the answer also gives a measure of the transient response to a ramp-
function input.

As in Sec. 7.2, the error spectrum is simply,

G,(j) = lY(20rj,f)lW(j9, (132)

where Y(2rjf) is the transfer function,

The mean-square error is

This can be evaluated by the table of integrals in the appendix. One
obtains

L2N

2=4PX
8 + 77 – y’ – 3a + 3P – 3-’f17 + 10 X 3-SW9 – 2 X 3-a~2 + 3-ac@7

&x–8@+2x 3-’a@+7ay+w’3– 3c22-3-’@2-a7t ‘
(135)
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where
L

a = VIL + V~—-,
T.

/3 = v,L ;, y = v~.
a

The system is stable for the set of all those control

367 I

(13ti)

parameters
(v,, v,, 2’0) which lie in the region of stability. This region is bounded by
the surface over which the denominator of Eq. (135) vanishes. It is
clear that the plane L/Ta = O and the plane vlL = O bound the region of
stability. Figure 8.16 is a three-dimensional sketch of this region.

d
$
A

Vz
FIG. 8.16.—Stability region.

value 0.0825 NL2, atThe mean-square error, ~ attains its minimum

the point L/T. = 0.55, v,L = 2.25, VZ= 4. This means that the best
tracking can be done with an aided-tracking constant T. = 1.8L and
with vZ/vl = L/O.56. For a time lag L of 0.5 sec thk gives T. = 0,9
sec and v~i’vl = 0.9 sec; the operator should thus use about as much
derivative control as proportional control. However, in the experiments~
performed the operator v-as not able to introduce very much derivative
control. We therefore set VZequal to zero.

When .2 = O, Eq. (135) becomes

L2N 8 – 3a + 36 + 10 X 3-343 – 2 X 3-3~2,;2=_
4B 8a – 8fl + 2 X 3-’@ – 3a2 – 3-3&

(137)

J A. Sohczyk, “Aided Tracking,” RI, Report No, 430, Sept. 17, 1943.
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where

a = VIL and R = ,,L & (138)
a

The region of stability becomes the area shown in Fig. 8“17. The mean-
square error attains its minimum value 1.1NL2 for L~Ta = 0.2 and

I
~1

7=

I
o 1 2

*,L
3

FIG. 8.17.—Stability region for X2 = O.

VIL = 1.7. With L = 0.5 see, thk corresponds to a value of 2.5 sec for
the aiding constant T.. The rms error is then about 3.6 times as large

a
7

~6
~
*5
34
s
1+3

32
1

0
05101520253035404550

7rackingconstsnt in units of L

FIG. S.18.—Aided-tra&ingerror for a rau-
dom-velocityinput. vz _ O.

as that obtained with optimal de-
rivative control. “

The full line of Fig. 8.18 is a

dot of the minimum value of ~.
as a function of the aided-tracking
constant for v, = O. This curve
of mean-square error as a function
of the aided-tracking constant cor-
responds very closely to what is
obtain e d experimentally. The
circled dots on this graph are ex-
perimental average mean-square
errore for the corresponding aided-
trackine time constants. These

data were obtained with a handwheel trac~ig unit.] The ordinate
scale for the experimental points has been so adjusted that the two minima
coincide. The theoretical optimal value for T. with VZ = O is 5L = 2.5
aec; the optimal value as found experimentally was between 2 and 3 sec.

1Sobczyk op. cd., p. 21.



APPENDIX

TABLE OF INTEGRALS

The following is a table of integrals of the type

/
l.=%$ ‘dz 9.(Z)

—. h.(z) h.(-x)’
where

hn(z) = a@ + alz’-’ + . ~ ~ + am,

g.(z) = boxz”–z + b,xz”–’ + , .+ L,,

and the roots oj hn(x) all lie in the upper halj plane. The table lists the

integrals In for values of ?2 from 1 to 7 inclusive. 1

b~
I,=—

2aOal

.b, + a+

1, =
2aoal

aoalbt
—a~bo + aobl — —

a:
Ia =

2aO(aOaj– ala,)

b,( –a,a, + a,a~) – a,a,b, + a,a,b, + a+ (am – ala,)

1, =
2a0(aoa~ + a?a4 – a1aza3)

Ms
16=—

2aOA5
Mb = bo( –aoaAas + a,a~ + a~as – ata,ai) + aObl( –a,as + a2aJ

+ a0b2(a0cbb – a1a4) + a0~3(–a0a3 + a1a2)

+ a+ ( –a0a1a5 + aOa~ + a?a4 – a1a2a3)

AS = a~a~ – 2@alaiah – a0u2a3ab + @a4 + C@!

— a1a2a3a4

L=*
2aOA6

ii’f6= bO( – aOu3&a6 + a0a4a~ – u?ai + ‘hla2f%a6 +

— ala~as — a~a~ — aia~aa + aia3a4a6)

+ aob,( ‘alaKa6 + a2a~ + a%a6– a3a4aK)

+ ala~a~

a1a30.4a6

1This table wae computed by G. R. MacLane, foiiowing the’ method developed
in sec. 7.9.
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+dz(-aoa~ – @a@f,+(3@@5)
+d)3(@I@a5+ @36 – @a2@)
+a&4(aw1a5 – aoai – a!a4+a,a2a3)

+~(@d+@i@@a6 – 2aOa1a4a5 – a0a2a3a5 + aoa~at

M,
17 =—,

2aOAT
where M? = bOmO+ aOblml + a~b~mt + . . + UObGm&

m. = a~a~a~ — 2a0a1a~aT – 2a0a2a4a~ + a0a2a5a6a1 + a0a3a5a~

+a0aja5a7 – aOa4a~a6 + a~aj + sa1a2a4a6a7 — za1a2a6a~

— ala~a4a~ — ala~a7 + ala~aba.2 + a~a$ — za~a3a~ay

— a~a4a5a7 + afa~af, + a2a3a~a7 — a2a3a4a5a6 + a2a~ai

ml = aOa4a~ — a0a5a6a7 — a1a4a6a7 + a1a5a~ — a~a? + za2a3U6U7

+ a2a4a5a7 – a2a~as – a~a~ – a3a~a7 + a3a4a5a6

mt = aoa,a~ — aoa3a6a7 — aoadabaT + aoa~a~ — alaza~a~

+ ala@~ + ala~a7 – ala4a5a6

m3 = ‘&~ + za0a1a6(37 + aOa3a4@ — aOa3@,a6 — a~a~ — (_31a2(34a7

+ i3@2a5a6

??34 = (@5a7 — aOa]a4a7 — a0a1a5a6 — a0a2a3a7 + a0a&6

+ @a4a6+ al&7 – @a2a3a6

??35 = U&Z@7 — &~ — aOa@2(37 — a0a1a3a6 + ‘k0a1a4a5

+ aOa2a3a5 – a0aja4+ a~a2a6 – a!aj – ala~a5 + ala2aSa4
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Acceleration-error constant, 145
definition of, 66

Aided tracking, definition of, 361
Aided-tracking time constant, rms-error

criterion in determining, 363–368
definition of, 362

Aided-tracking unit, 361-363
Amplidyne, 106
Amplifier, motor and power, 103

rotary magnetic, 106
Amplitude, definition of, 40
Arbitrary input, response to, 48
Attenuation and phase diagrams, con-

struction and interpretation of, 171
.Ittrnuation-phase analysis, 163
Attenuation-phase relationships, 169
:Iutucorrelation function, definition of,

273
of filtered signal, 288–291
norm~hzed, definition of, 274

B

llack-emf constant, 104
IIarnes, J L,j 9
l}odc, H TV , 17, 169
Br:mrh point, 13,5
Bridge, spwd-fccdl,ack, 214
l)rid~c T, symmetrical, 123
Brolvn, G. S., 16, 158
Buildup time 7,, 142
Burnslde, W’. S., 337
Bnsh, V., 9, 208

c
Caldwcll, S. H., 280
Cbllmder, A.; 158
Carslaw, H, S., 51
Chandrasckhar, S., 266
Clamping, 245-246

definition of, 245

Commutated signal, 293
Commutator, 292
Constant (see type of constant)
Convergence, absolute, abscissa of, 51

region of definition of, 51
definition of, 23>234

Ckmvolution, definition of, 54
Coradi harmonic analyzer, 283
Correlation functions, 273-277, 283-288

cross-, definition of, 277
and spe~tral density, relation between,

28.%288
Correlation matrix, definition of, 277
Cross-correlation function, definition of,

277
Crossover, definition of, 304
Cross-spectral density, definition uf, 279

D

D-c servo motors, 103
Derihcl, 163
Dccil,cl–r]llase-:,l]glc diagrams, 179, 346,

357
Dday time, 142
Delta function, 279

definition of, 30
Derivative of 8,, 328
Derivative control, 197
Design rncthod, new,

3zKL368
applications of,

J)c.ign tmhniqurs, history of, 15
IMwtors, phase-sensitive, 111
I)ickson, I.. E., 334, 335
l)] ffercntial, 134
Diffcrcntia] equation analysis, 152
Dirac delta function (see Delta function)
Doctsch, G,, 51, 151

E

E-transformer, 102
12mde, F., ]55
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Ensemble, defiltion of, 266
Ensemble averages, 271-273

definition of, 272
Equalization, integral, 203

with subsidiary loops, 208
Equalizer, bridged-T, 227

frequency response of, 227
proportional-derivative, 199

Ergodic hypothesis, 271-273
definition of, 272

Error coefficients, 147
Error-measuring element, 134
Error-measuring systems, 77

potentiometer, 95
Evans, L. W., 155

F

Fading, defiltion of, 265
Feedback, systems with, 62-75
Feedback cutoff frequency, 160
Feedback falter (see Filter, feedback)
Feedback function, 134
Feedback transfer function (see Transfer

function, feedback)
Feedback transfer 10CUE,66-68
Ferrell, E. B., 169
Fifter, 24-30

antihunt, use of, 215
clamped, stability of, 251
with clamping, 245–253
feedback, 124
high-pass, for d-c feedback, 126
linear (see Linear filter)
low-pass, ideal, 141
lumped-constant, 2*2S

frequency-response function of, 42-
43

normal modes of, 26-28
transfer function of, 59-61

normalized, de6nition of, 236

pulsed, definition of, 232
stability of, 233-236, 242–244
transfer function of, 24@242

with pulsed data, 232–245
EC, .two-section high-pass, graph for

designing, 127
stable, 3840

definition of, 3A
with switches, 253-254
transfer function of, definition of, 241

Filter, unstable,38-40
definitionof, 38

Filter responseto sinusoidalinput, 238-
240

Follow-upsystem, 1
Fourierintegral,43–48
Fourierseries,43
Fouriertransform,definitionof, 45
Frequency-responsecharacteristics,179
Frequency-responsefunction, 40–51

definitionof, 41
of lumped-constantfilter,42–43
and weighting function, relation be.

tween,4*5O

G

G, elementsof, reductionof, as rational
functions,317–319

generalreductionof, 32&321
reduction of, by experimental data,

319-320
G (f), 313
G, 313
r., as eum of all symmetric functions,

337-338
Gain, antihunt,217

infinite,ideal case of, 34$352
Gardner, M. F., 9
Gear trains, 130

various, inertia of, 133
Generating function, 244245

definition of, 245
Godet, S., 212
Graham, R. E., 169
Guillemin, E. A., 9, 24, 142

H

Hall, A. C., 16, 17, 21, 158, 163, 309
Harris, H., 16, 195
Hartree, D. R., 158
Hazen, H. L., 16
Herwald, S. W., 158

I

Input, arbitrary, response to, 48
representative, response to, 138
sinusoidal, filter response to, 238–240

response to, 4@-42
unit-step (see Unit-step input )
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Input-noise spectral-density matrix, defi-
nition of, 313

Input signal and noise, 34&342
Integrals, evaluation of, 33>339
Integrated-square error, definition of, 314

J

Jaeger, J. C., 51
Jahnke, E., 155

K

Khintchine, A., 274

L

Laguerre functions, 319
Laplace transform, 51-58

of convolution of two functions, 54
definition of, 51
of derivative, 53
of e-”’g(t), 54
of integral, 54
limiting values of, 55
use of, in solution of linear differential

equations, 56-58
Lauer, H., 163
Lead, 197
Lee, Y. W., 17
Lesnick, R., 163
[,inear filter, 28-30

definition of, 28
normal response of, to arbitrary input,

33-35
to unit-impulse input, 3(P33

Linear function, definition of, 29
Linville, T. M,, 88
Liu, Y. J., 155
hop, zero-static-error, 140
I.oop transfer function, 134

experimental decibel–log-frequency
plot of, 228

hfc

hlacColl, L. A., 169
MacLane, G. R., 369

M

Mapping theorem, 68-70
Marcy, H. T,, 195

Matson, L. E., 163
Mean-square, definition of, 273

Mean-square error, minimizing of, 32S
328

Minorsky, h’,,16
Modulators, 108

Moments, definition of, 273
Motor and power amplifier (see Ampli-

fier, motor and power)
Multiloop servo systems (see Servo

system, multiloop)

N

h’etwork, adding, 96
for a-c error-signal, 117
derivative-plus-proportional, 114
equalizing, 114
integral-plus-proportional, 115
phase-lag, 227

frequency response of, 227
Nichols, N, B,, 131
,Yoise, spectral density of, 294–295

h-ormal modes, definition of, 27
Normal response, definition of, 26
Notch interval, 121
Null devices, 101
Nyquist, H., 16, 71
Nyquist criterion, 7@72

modified form of, 256
Nyquist diagram, 66, 158

of servo with tachometer-feedback
loop, 359

Nyquist test, 134, 136, 138

0

Output disturbances, 145
Over-all transfer function, 62, 225

P

Panton, A. W., 337
Parallel T with equal condensers, 121
Parameters, best control, for finite am-

plifications, 352–360
Parseval theorem, 61
Performance specifications, 17
Periodicities, hidden, 279
Phase, definition of, 40
Phase angle, maximum, 199
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Phase margin, 160
Phillips, R. S., 21
Plain, G, J., 212
Poisson distribution, definition of, 302
Porter, .4., 158
Positive sense, definition of, 69
Potentiometer error-measuring systems,

95
Potentiometer noise, 305–307
Potentiometer resolution, 9S
Probability-distribution functions, 269

270
Pulsed filter (see Filter, pulsed)

Q

ouadratic factor, 175, 176

R

Radar automatic-tracking example, 291-
298, 32=333

Rando,T, process, 266-270
definition of, 269
purely, 298-300

definition of, 298
stationary, 270–273

definition of, 270
hzwmonic analysis for, 27&291

Random series, 267
Rmdom-walk problem, discrete, 267, 269
R, (a), 47
Itcmote control, 1
Repetition frequency, definition of, 232
Ikpetition period, 281

definition of, 232
Itesiducs, method of, 46–48, 333
Iticc, S, 0,, 266
Itms, definition of, 273
I{ms error, definition of, 309

mathematical formulation of, 3 12–315
ItIns-error criterion in servomechanism

design, 308-339
ltobinson, G., 283
Ib,ot-mean-square (see Rms)
Itoots, pairs of, product of all sums of,

335-336

s

Scan frequency, f., 291
Schwartz’s inequality, 61

SCR-584 automntic-tracking loop, 212

Servo, best, with proportional properties
of, control, 34>347

clamped, with proportional control,
2.59-261

controlled by filter with clamping,
257-259

with proportional control, 342–348
decibel–log-frequency diagram for,

34!5
fl’~ = O, 347-348

pulsed, general theory of, 254-257
stability of, 255–257

with pulsed input, 254261
with tachometer-feedback loop, deci-

bel-log-frequency diagram for, 357
with two-phase motor, 224

Servo loops, equalization of, 196
Servo motors, d-c, 103
Servo system, 2

m ultiloo p, 7>75, 186
three-differential, 137
two-differential, 135

Servomechanism design, RMS-error cri-
terion on, 308-339

Servomechanism input, typical, 300-304
Servomechanisms, continuous-control, 7

definition correction, 7
relay-type, 7

Sgn b, definition of, 235
Sinusoidal sequence, 236–238

dctinition of, 236
Sobcz:,-k, .4., 118, 124, 367, 368
Spectral density, 278–288

and autocorrelation function of tiltered
signal, 288–29 1

calculation of, 284–286
and correlation functions, relation be-

tween, 283–288
definition of, 278
error, integration of, 323–325

reduction of, 317–321
for cxpcrimcntal data, 282-283
of input and noise, 2!34-295
normalized, definition of, 280
of random series, 2S1–282
of stationary random process, 280–281

Speed-voltage constant, 104
Stability, region of, boundary of, 316

definition of, 316
Stand off, 113
Symmetric functions, all, sum of, 337-338
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,Synchro, 78
Synchro control tr:ukorIlit,rs, W
Synchro systems, pmrallcl, coerr ion ill, 88
,Synchro transmitter and rcpcatcr dnt,a

systcm, 79
Synchm units for 115-volt, 60-cycle op-

rrotiou. 80
Synchronizing circuit, 84

T

Tacho,,,cter, 101
Tachom(tcr f(,t,dl,srk control, 348-360
Taplin, ,J., 16
Termtm, U’. k;., 16!)
Time a~-cragch, 271-273

clcfinition of, 272
Tiluc-v:miahlv datz, st:itistical properties

of, 262–307
‘~itchm~rsh, E. (;., 44, 46, 01, 240–242,

333
T(rrqllc,-c(lrrc>llt const:u]t, 104
Torque-error const:mt, 146
Tracking, aided (see Aided trackiug)

manusl, 360–368
Transfer ftmction, ,58-62

definition of, 58

feedbtrk, dctinition of, 62, 255
of lumped-const:~t servos, 64–66

of filter, \vith clamping, 246-251
definition of, 241

loop (see Loop transfer function)
of lumped-constant, filter, 59–61
nature of, 31 5–317

over-all, definition of, 62, 255
of pulsed filter, 240–242
simplified, for ]IY~T,~>>1, 2,51–253
stability criterion in terms of, 61
of system, definition of, 62

Transfer loci, other types of, 195
Transfer locus, definition of, 67, 256
Transfer-locus analysis, 158

‘~rtl]ihlunll(,rs,rottitablc, 92

syurhro (YJIItrol, 82

Tr;insirut NWIWILSC,dctiuitio]l uf’, 27
Tmnsposc, definition of, 313
Tmvcrse, (l[.fi]]itiorl of, 291

IThlr.,,l)cck, G. 1;., 266, 269

[ nit l,ulsr, drfinitioll of, 233
{“r)it-r:]nlp fun(,tloll, 365

definition (Jf) 53
l’nit-strp fllnrtion, d(fi]lition of, 37
t-nit-stop i]lput, norm:,] responw, to, 37

v

Vari:mrcl definition of,273
Yclocity, :u]g~llnr, :uld .Iccclc ration of

t:~rget 011straight-line course, 22!)
i“elority-rrror const:int,, 145

dctinltion of, 65
V’ihr:ltor, synchrr)nolls, 108
Voltt~gr, autistick-off, 85

W’

\Vzrlg, L1ing-Chcn, 266, 269
Jyatson, G N , 43
JTeighting function, 12, 3(PK)

definition of,31
and freqtlcIlcy-rcsporisc function, rela-

tiou tmtlveen, 4tL50
}Veighting srqmmce, 232-233

definition of, 233
N-hittaker, E. T., 43, 283
Jf-idder, D. V., 51
fViener, N., 17, 266, 283, 309, 310, 319,

321
Jyoodward, J. S,, 88

z

Zygmund, A., 43




